Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to load as a two-point loading. To model the coarse aggregate realistically, the aggregate must distributed randomly according to the gradient and amount actually used in the mix design. This property is not found in the ABAQUS program that resulted in the use of an alternate program to represent the aggregate randomly. Next, the random representation of the aggregate were transfered to the ABAQUS program by using commands and instructions that the program can understand, to draw as a sketch. The comparison between experimental and numerical results showed that the XFEM is a good method used to simulate the non-smooth behavior in RC beams such as discontinuitiy and singularity. While a mesoscale model can be simulated the non-homogeneity in the concrete.
An energy and exergy thermodynamic analysis using EES program was done for a domestic refrigerator working with R-134a using vapor compression refrigeration cycle. The analysis deals with the system component, i.e. compressor, condenser, evaporator and the expansion device. The analysis depends on the entropy generation minimization approach to improve the refrigerator performance by exploring the optimum design points. These design points were derived from three different theories governing the entropy generation minimization using exergy analyzing method. These theories were first applied to find the optimum balance between the hot inner condenser area and the cold inner evaporator area of the refrigerator and between
... Show MoreIn this paper, photometric analysis of two short period group of the eclipsing binaries (RS CVn); RT And and BH Vir is presented. New physical and geometric parameters were obtained by performing two computer modeling. The first model is software package PHOEBE based on the Wilson–Devinney method, and the second is Binary Maker 3 (BM3).Our results are in good agreement with those obtained using the same modeling.
The major objectives of this research are to analyze the behavior of road embankments
reinforced with geotextiles constructed on soft soil and describe the finite element analysis by using
ANSYS program ver. (5.4). The ANSYS finite element program helps in analyzing the stability of
geo- structure (embankment) in varied application of geotextiles reinforcement to enhance the best
design for embankment.
The results of analysis indicate that one of the primary function of geotextiles reinforcement was to
reduce the horizontal displacement significantly. With the inclusions of reinforcement, the horizontal
displacement reduced by about (81%), while the vertical displacement reduced by (32%). The effect
of geotextiles
The bony pelvis has a major role in weight transmission to the lower limbs. The complexities of its geometric form, material properties, and loading conditions render it an open subject to biomechanical analysis.
The present study deals with area measurement, and three-dimensional finite element analysis of the hip bone to investigate magnitudes, load direction, and stress distribution under physiological loading conditions.
The surface areas of the auricular surface, lunate surface, and symphysis pubis were measured in (35) adult hip bones. A solid model was translated into ANSYS parametric design language to be analyzed by finite element analysis method under different loading conditions.
The surface
... Show MoreThis paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC) slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength,
... Show MoreThe study was performed to analyze the oropharynx airway and examine the influence of age and gender on the oropharynx volume configuration using cone beam computed tomography.
This study examined the cone beam computed tomographic images of 51 patients 25 male and 26 females, group matched for age and gender. The oropharynx airway volume and area between the posterior nasal spine and top of the epiglottis were measured and compared.
This research aims to study the important of the effect of analysis of covariance manner for one of important of design for multifactor experiments, which called split-blocks experiments design (SBED) to deal the problem of extended measurements for a covariate variable or independent variable (X) with data of response variable or dependent variable Y in agricultural experiments that contribute to mislead the result when analyze data of Y only. Although analysis of covariance with discussed in experiments with common deign, but it is not found information that it is discussed with split-Blocks experiments design (SBED) to get rid of the impact a covariance variable. As part application actual field experiment conducted, begun at
... Show MoreIn this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t
... Show MoreTensile strength is a critical property of Hot Mix Asphalt (HMA) pavements and is closely related to distresses such as fatigue cracking. This study aims to evaluate methods for assessing fatigue cracking in Asphalt Concrete (AC) mixes. In order to achieve optimum density at different binder contents, the mixes were compressed using a gyratory compactor. Tensile strength was assessed using the Indirect Tensile (IDT) and Semi-Circular Bend (SCB) tests. The results showed that the tensile strength measured by the SCB test was consistently higher than that measured by the IDT test at 25 °C. In addition, the SCB test showed a stronger correlation between increasing binder content and tensile strength. For binder contents ranging from 4
... Show MoreTwo novel demountable shear connectors for precast steel-concrete composite bridges are presented. The connectors use high-strength steel bolts, which are fastened to the steel beam with the aid of a special locking configuration that prevents slip of bolts within their holes. Moreover, the connectors promote accelerated construction and overcome typical construction tolerances issues of precast structures. Most importantly, the connectors allow bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (3) steel beams can be replaced, while precast
... Show More