Biodiesel is becoming one of the most attractive alternative biofuels for petroleum-based diesel fuels. The castor plant is one of the abundant non-edible oils found in many countries. This paper aims to study Libyan castor oil and its potential for diesel conversion. Experiments were carried out in the laboratories of the Specific Center for Training in the Oil Industries in Al-Zawiya. The oil was extracted using a Soxhlet extractor and n-hexane solvent at 60 °C. Transesterification reactions were conducted in a batch reactor (a three-neck flask was used, where the middle opening carries a reflux condensation unit) at 65 °C. The methanol-to-castor oil molar ratio was 6:1, with a catalyst concentration of 1 wt.% relative to the castor oil, and the reaction time was 30 min. Castor oil was analysed and found to have a fatty acid content of 0.7%. The productivity of biodiesel exhibited 80% yield. Standard test methods of analysis were conducted to determine the biodiesel’s properties. Results indicated that the kinematic viscosity at 40 °C was 14.24 cSt, the density was 0.924 g/cm3, the cetane number (CN) was 54 and the pour point was −15 °C, indicating that castor oil biodiesel is of high quality, with a high CN and a low pour point.
The paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie
... Show MoreMultiple drilling problems are being faced continuously while drilling wells in the southern Iraqi oil fields. Many of which are handled poorly and inefficiently which yields longer non-productive time due to the lack of knowledge about the source of these problems. This study aims to investigate the Basra oil fields formations from Faris to Mishrif, diagnose the potential problems, and present the optimum treatment for each problem.
Gathering of field data and previous studies on the subject, in addition to the field experience of drilling supervisors were all the information bases of this study. Southern Iraqi oil fields were studied and analyzed care
Asphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp
... Show MoreIraq has the distinction of being a great potential of non-renewable natural resources,
especially crude oil and natural gas. Since the discovery of crude oil at the beginning of the
twentieth century in Iraq. Although the different of investment types, it contributed to the oil
sector in the provision of financial resources to the state treasury , since that date until the
present time.
Search has been marked by division ((The foreign investment in the oil sector in Iraq after
2003)) into three sections. The first section included a brief history of the development of
Iraq's oil potential in terms of oil reserves, and oil fields, and the quantities of production and
export. The second section reviewed the investm
Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at dif
... Show MoreThe research aims to present a proposed strategy for the North Oil Company, and the proposed strategy took into account the surrounding environmental conditions and adopted in its formulation on the basis and scientific steps that are comprehensive and realistic, as it covered the main activities of the company (production and exploration activities, refining and refining activities, export and transport of oil, research and development activity, financial activity, information technology, human resources) and the (David) model has been adopted in the environmental analysis of the factors that have been diagnosed according to a
... Show MoreKnowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine
... Show MoreSamples of gasoline engine oil (SAE 5W20) that had been exposed to various oxidation times were inspected with a UV-Visible (UV-Vis) spectrophotometer to select the best wavelengths and wavelength ranges for distinguishing oxidation times. Engine oil samples were subjected to different thermal oxidation periods of 0, 24, 48, 72, 96, 120, and 144 hours, resulting in a range of total base number (TBN) levels. Each wavelength (190.5 – 849.5 nm) and selected wavelength ranges were evaluated to determine the wavelength or wavelength ranges that could best distinguish among all oxidation times. The best wavelengths and wavelength ranges were analyzed with linear regression to determine the best wavelength or range to predict oxidation t
... Show More
