Preferred Language
Articles
/
MRhscZgBVTCNdQwCsr2M
Biodiesel Production from Castor Oil
...Show More Authors

Biodiesel is becoming one of the most attractive alternative biofuels for petroleum-based diesel fuels. The castor plant is one of the abundant non-edible oils found in many countries. This paper aims to study Libyan castor oil and its potential for diesel conversion. Experiments were carried out in the laboratories of the Specific Center for Training in the Oil Industries in Al-Zawiya. The oil was extracted using a Soxhlet extractor and n-hexane solvent at 60 °C. Transesterification reactions were conducted in a batch reactor (a three-neck flask was used, where the middle opening carries a reflux condensation unit) at 65 °C. The methanol-to-castor oil molar ratio was 6:1, with a catalyst concentration of 1 wt.% relative to the castor oil, and the reaction time was 30 min. Castor oil was analysed and found to have a fatty acid content of 0.7%. The productivity of biodiesel exhibited 80% yield. Standard test methods of analysis were conducted to determine the biodiesel’s properties. Results indicated that the kinematic viscosity at 40 °C was 14.24 cSt, the density was 0.924 g/cm3, the cetane number (CN) was 54 and the pour point was −15 °C, indicating that castor oil biodiesel is of high quality, with a high CN and a low pour point.

Scopus Crossref
View Publication
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Production of Methyl Ester (Biodiesel) from Used Cooking Oils via Trans-esterification process
...Show More Authors

Used cooking oil was undergoing trans-esterification reaction to produce biodiesel fuel. Method of production consisted of pretreatment steps, trans-esterification, separation, washing and drying. Trans-esterification of treated oils was studied at different operation conditions, the methanol to oil mole ratio were 6:1, 8:1, 10:1, and 12:1, at different temperature 30, 40, 50, and 60 º C, reaction time 40, 60, 80, and 120 minutes, amount of catalyst 0.5, 1, 1.5, and 2 wt.% based on oil and mixing speed 400 rpm. The maximum yield of biodiesel was 91.68 wt.% for treated oils obtained by trans-esterification reaction with 10:1 methanol to oil mole ratio, 60 º C reaction temperature, 80 minute reactio

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 01 2016
Journal Name
Renewable Energy
Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin
...Show More Authors

View Publication
Scopus (140)
Crossref (128)
Scopus Clarivate Crossref
Publication Date
Wed Sep 18 2024
Journal Name
International Journal Of Renewable Energy Development
Production of biodiesel by using CaO nano-catalyst synthesis from mango leaves extraction
...Show More Authors

Development and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential fo

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed May 01 2019
Journal Name
Research Journal Of Chemistry And Environment
Biodiesel from fresh and waste sunflower oil using calcium oxide catalyst synthesized from local limestone
...Show More Authors

Scopus (9)
Scopus
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
An attempt to Stimulate lipids for Biodiesel Production from locally Isolated Microalgae in Iraq
...Show More Authors

Two locally isolated microalgae (Chlorella vulgaris Bejerinck and Nitzschia palea (Kützing) W. Smith) were used in the current study to test their ability to production biodiesel through stimulated in different nitrogen concentration treatments (0, 2, 4, 8 gl ), and effect of nitrogen concentration on the quantity of primary product (carbohydrate, protein ), also the quantity and quality of lipid. The results revealed that starvation of nitrogen led to high lipid yielding, in C. vulgaris and N. palea the lipid content increased from 6.6% to 40% and 40% to 60% of dry weight (DW) respectively.Also in C. vulgaris, the highest carbohydrate was 23% of DW from zero nitrate medium and the highest protein was 50% of DW in the treatment 8gl. Whil

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Mar 25 2015
Journal Name
Comptes Rendus Chimie
A novel method for the synthesis of biodiesel from soybean oil and urea
...Show More Authors

The increasing demand for energy has encouraged the development of renewable resources and environmentally benign fuel such as biodiesel. In this study, ethyl fatty esters (EFEs), a major component of biodiesel fuel, were synthesized from soybean oil using sodium ethoxide as a catalyst. By-products were glycerol and difatty acyl urea (DFAU), which has biological characteristics, as antibiotics and antifungal medications. Both EFEs and DFAU have been characterized using Fourier transform infrared (FTIR) spectroscopy, and 1H nuclear magnetic resonance (NMR) technique. The optimum conditions were studied as a function of reaction time, reactant molar ratios, catalyst percentage and the effect of organic solvents. The conversion ratio of soybea

... Show More
Preview PDF
Scopus (11)
Scopus
Publication Date
Sun Dec 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Production of Biodiesel Fuel from Oleic Acid and Comparison of its Properties with Petroleum Diesel
...Show More Authors

Biodiesel define as the mono-alkyl esters of vegetable oil and animal fats is an alternative diesel fuel that is steadily gaining attention because the combustion of fossil fuels such as coal, oil and natural gas has been identify as a major cause of the increase in the concentration of carbon dioxide in the earth’s atmosphere and causing global warming.
The present work concerns with estimating the physical properties experimentally such as kinematic viscosity, density, flash point and carbon residue of biodiesel that produced by the esterification reaction of methanol and oleic acid with homogeneous catalysts H2SO4 in a lab-scale packed reactive distillation column using the best operating conditions of methanol to oleic acid 8:1,

... Show More
View Publication
Publication Date
Thu Nov 07 2024
Journal Name
Journal Of Ecological Engineering
Microwave assisted production of biodiesel using CaO nano-catalyst produced from mango fallen leaves extract
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Preparation and Characterization of Nay Zeolite for Biodiesel Production
...Show More Authors

Iraqi kaolin was used for the preparation and characterization of NaY zeolite for biodiesel production via esterification reaction. Oleic acid was used usually as a typical simulated feedstock of high acid number for the esterification reaction.

   The chemical composition for the prepared Nay zeolite is as following:  (Ca2.6Na1.K0.1)(Al6.3Si17.7)O48.16H2O, the silica to alumina ratio in the prepared catalyst was found equal to 2.6 and Na2O content was 12.26 wt. %, with relative crystallinity equal to 147.4 % obtained by the X-ray diffraction. The surface area result shows that the prepared catalyst has 330 m2

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Zirconium Sulfate as Catalyst for Biodiesel Production by Using Reactive Distillation
...Show More Authors

Production of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.

 

       The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared  catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c

... Show More
View Publication Preview PDF