Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal of the current status of semi-automated and automated methods for the segmentation of MR images with important issues and terminologies. Advantages and disadvantages of various segmentation methods with salient features and their relevancies are also cited.
HS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020
The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreThe research summarizes the knowledge of the dimensions and denotations of T.V advertisement; and its constituents for building it through the semiotic approach of an ad sample represented by the announcement of Zain Kuwait Telecom Company which carries the title "Mr. President" using Roland Barth's approach, starting with the designation, implicit, and linguistic reading to reach the narrative features and their denotations. That makes television advertising as a semiotic and pragmatic discourse in view of the still and motion picture with its efficiency and strength to inform and communicate. And what lies in it of aesthetic, artistic elements; informational and effective power in influencing the recipients by focusing on narratives and a
... Show MoreThe ceiling of the midbrain has a couple of optic lobes which are prominent and used as an optic center that reflex what it receives from eye retina fibers. The histology of optic tectum has been studied in Iraqi water snake natrix tesselata tesselata . It was found that the number of optic tectum were seven main strata organized from the outside to the inside as follows : the stratum zonula (SZ), the stratum opticum (SO), the stratum fibrosum et griseum superficialis (SFGS), the stratum griseum central (SGC), the stratum album central (SAC), the stratum griseum periventricular (SGP), and the stratum album periventricular (SAP). the three last strata consider deep layers on the optic tectum It was noticed that the thinnest strata was the fi
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreSegmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and ge
... Show More