Rare earth metal oxides (REMOs) have gained considerable attention in recent years owing to their distinctive properties and potential applications in electronic devices and catalysts. Particularly, cerium dioxide (CeO2), also known as ceria, has emerged as an interesting material in a wide variety of industrial, technological, and medical applications. Ceria can be synthesized with various morphologies, including rods, cubes, wires, tubes, and spheres. This comprehensive review offers valuable perceptions into the crystal structure, fundamental properties, and reaction mechanisms that govern the well-established surface-assisted reactions over ceria. The activity, selectivity, and stability of ceria, either as a stand-alone catalyst or as supports for other metals, are frequently ascribed to its strong interactions with the adsorbates and its facile redox cycle. Doping of ceria with transition metals is a common strategy to modify the characteristics and to fine-tune its reactive properties. DFT-derived chemical mechanisms are surveyed and presented in light of pertinent experimental findings. Finally, the effect of surface termination on catalysis by ceria is also highlighted.
This work investigates the structural, optical, and surface properties of ZnO thin films prepared by sol-gel method. The effect on waveguide sensor was examined at different irradiation durations of alpha particles. The X-ray diffraction (XRD) measurements revealed that the crystalline phase of ZnO thin films does not change after irradiation and showed a hexagonal structure of wurtzite type with an orientation toward (002). Moreover, ZnO thin films absorbance was increased with increasing irradiation time, whereas the transmittance was decreased. Additionally, increasing the irradiation time of alpha particles caused an increase in the extinction coefficient and the imaginary part, while the optical energy gap of the ZnO samples w
... Show MoreThis research includes the use of CdTe in the design of a solar cell. The SCAPS-1D computer program was used to simulate thin cell capacity of CdTe/CdS by numerical analysis with the addition of a buffer layer (Zn2SnO4) to enhance cell efficiency. The thickness of the window layer (n-CdS) was reduced to 25nm with the inclusion of an insulating layer of 50 nm thickness to prevent leakage towards the forward bias with respect to the lower charge carriers. As for the absorber layer thickness (p-CdTe), it varied between 0.5µm and 6µm. The preferable thickness in the absorbent layer was 1.5µm. Different operating temperatures (298K-388K) were used, while the highest conversion efficiency (η=18.43%) was obtain
... Show MoreA newly developed analytical method was conducted for the determination of Ketotifen fumarate (KTF) in pharmaceuticals drugs via quenching of continuous fluorescence of 9(10H)-Acridone (ACD). The method was applied using flow injection system of a new homemade ISNAG fluorimeter with fluorescence measurements at ± 90◦ via 2×4 solar cell. The calibration graph was linear in the range of 1-45 mmol/L, with correlation coefficient r = 0.9762 and the limit of detection 29.785 µg/sample from the stepwise dilution for the minimum concentration in the linear dynamic ranged of the calibration graph. The method was successfully applied to the determination of Ketotifen fumarate in two different pharma
... Show MoreThe modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.
... Show MoreThe study entitled (Anthropometric Treatments of the Study Seat Units Used in Elementary stages) highlighted the relations between the sizes of dimensions of the study seats and the different anthropometric sizes of the students. The study problem is manifested in the following question: what are the anthropometric treatments used in the design of the study seats in the elementary stages? The research aims at finding design treatments for the anthropometric variables of the study seats used in the elementary stages, because the study seats have to do with preserving students health and safety through providing an ideal seating mechanism compatible with the anthropometric variables which enhances comfort, safety and focus in the mo
... Show More
Abstract
Due to the lack of previous statistical study of the behavior of payments, specifically health insurance, which represents the largest proportion of payments in the general insurance companies in Iraq, this study was selected and applied in the Iraqi insurance company.
In order to find the convenient model representing the health insurance payments, we initially detected two probability models by using (Easy Fit) software:
First, a single Lognormal for the whole sample and the other is a Compound Weibull for the two Sub samples (small payments and large payments), and we focused on the compoun
... Show MoreWater quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their perfor
... Show MoreA numerical investigation was performed for the radiative magnetohydrodynamic (MHD) viscous nanofluid due to convective stretching sheet. Heat and mass transfer were investigated in terms of viscous dissipations, thermal radiation and chemical reaction. The governing Partial Differential Equations (PDEs) were transformed into an arrangement of non-linear Ordinary Differential Equations (ODEs) by using the similarity transformation. The resulting system of ODEs is solved numerically by using shooting method along with Adams-Moulton Method of order four with the help of the computational software FORTAN. Furthermore, we compared our results with the existing results for especial cases. which are in an excellent agreement. The
numerical
In this paper, an inexpensive, simple and well-accurate process of the generation of bimetallic silver Ag//gold Au core//shell is colloidal metal nanoparticles (MNPs). This is achieved via an atmospheric pressure non-thermal plasma glow discharge between two electrodes. One of these electrodes is a capillary tube placing over solution about (1 cm) that acts as the cathode, while the other electrode is a metal disk immersed in the solution and acts as an anode. Glow discharge process carried out at room temperature using a home-made cell with (6 KV) applied voltage and direct current (DC) about (1.8 mA) for different discharge periods. A wide range of bimetallic Ag//Au colloidal MNPs was rapidly synthesized as a result of non-thermal plas
... Show More