Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In addition, a bi-modal system for recognising emotions from facial expressions and speech signals is presented. This is important since one modality may not provide sufficient information or may not be available for any reason beyond operator control. To perform this, decision-level fusion is performed using a novel way for weighting according to the proportions of facial and speech impressions. The results show an average accuracy of 93.22 %.
A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets
... Show MoreBackground: Myelomeningocele is the single most common congenital anomaly that affects the CNS
and vertebral column. The third world countries having a higher incidence. The management is usually
surgical with relative high incidence of complications.
Objectives: to evaluate the possible risk factors that may predispose to early wound complications of
myelomeningocele.
Methods: This prospective study was carried out in the Surgical Specialization Hospital in Medical City
Complex - Baghdad from 2009-2012. 147 cases were included in the study. Requested data were
gestational age, type of delivery, gender, age at operation, type of suturing of the wound, tension of
suturing, duration of operation, site of the lesion,
Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use
... Show MoreDeveloped countries are facing many challenges to convert large areas of existing services to electronic modes, reflecting the current nature of workflow and the equipment utilized for achieving such services. For instance, electricity bill collection still tend to be based on traditional approaches (paper-based and relying on human interaction) making them comparatively time-consuming and prone to human error.
This research aims to recognize numbers in mechanical electricity meters and convert them to digital figures utilizing Optical Character Recognition (OCR) in Matlab. The research utilized the location of red region in color electricity meters image to determine the crop region that contain the meters numbers, then
... Show MoreThe differential protection of power transformers appears to be more difficult than any type of protection for any other part or element in a power system. Such difficulties arise from the existence of the magnetizing inrush phenomenon. Therefore, it is necessary to recognize between inrush current and the current arise from internal faults. In this paper, two approaches based on wavelet packet transform (WPT) and S-transform (ST) are applied to recognize different types of currents following in the transformer. In WPT approach, the selection of optimal mother wavelet and the optimal number of resolution is carried out using minimum description length (MDL) criteria before taking the decision for the extraction features from the WPT tree
... Show MoreAmong many problems that reduced the performance of the network, especially Wide Area Network, congestion is one of these, which is caused when traffic request reaches or exceeds the available capacity of a route, resulting in blocking and less throughput per unit time. Congestion management attributes try to manage such cases. The work presented in this paper deals with an important issue that is the Quality of Service (QoS) techniques. QoS is the combination effect on service level, which locates the user's degree of contentment of the service. In this paper, packet schedulers (FIFO, WFQ, CQ and PQ) were implemented and evaluated under different applications with different priorities. The results show that WFQ scheduler gives acceptable r
... Show MoreThis paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.
Improving performance is an important issue in Wireless Sensor Networks (WSN). WSN has many limitations including network performance. The research question is how to reduce the amount of data transmitted to improve network performance?
The work will include one of the dictionary compression methods which is Lempel Ziv Welch(LZW). One problem with the dictionary method is that the token size is fixed. The LZW dictionary method is not very useful with little data, because it loses many byt
... Show MoreFuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.
Numerous regions in the city of Baghdad experience the congestion and traffic problems. Due to the religious and economic significance, Al-Kadhimiya city (inside the metropolitan range of Baghdad) was chosen as study area. The data gathering stage was separated into two branches: the questionnaire method which is utilized to estimate the traffic volumes for the chosen roads and field data collection method which included video recording and manual counting for the volumes entering the selected signal intersections. The stage of analysis and evaluation for the seventeen urban roads, one highway, and three intersections was performed by HCS-2000 software.The presented work plots a system for assessing the level of service
... Show More