The combined system of electrocoagulation (EC) and electro-oxidation (EO) is one of the most promising methods in dye removal. In this work, a solution of 200 mg/l of Congo red was used to examine the removal of anionic dye using an EC-EO system with three stainless steel electrodes as the auxiliary electrodes and an aluminum electrode as anode for the EC process, Cu-Mn-Ni Nanocomposite as anode for the EO process. This composite oxide was simultaneously synthesized by anodic and cathodic deposition of Cu (NO3)2, MnCl2, and Ni (NO3)2 salts with 0.075 M as concentrations of each salt with a fixed molar ratio (1:1:1) at a constant current density of 25 mA/cm2. The characteristics structure and surface morphology of the deposited nano oxides onto the graphite substrates were determined by (XRD), (FE-SEM), (AFM), and (EDX). The results shown that nano Cu-Mn-Ni oxides were successfully deposited onto the anode and cathode. The crystal size and root mean square for the cathode were 30.79 nm and 79.36 nm, respectively, while for the anode, they were 24.19 nm and 41.88 nm, respectively. Furthermore, the combined system was examined for C.D, NaCl concentration, and time. In the EC-EO combined system, the cathode and anode were efficient when used as anodes for the EO process, besides aluminum. The cathode was more effective in the removal process than the anode due to its larger crystal size and the rough, granular shape of its surface. When current density (C.D) increased from 3 to 6 mA/cm², the removal efficiency shifted from 95% to 98%. However, excellent removal of 98% and 96.5% was attained with 1.665 and 2.0859 kWh/kg of dye as energy consumption in the presence and absence of NaCl salt, respectively by applying 6 mA/cm2 within 20 min of electrolysis.
Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements. Midline fracture; poor thermal conductivity and water sorption, are common problem in this material. The purpose of this study was to evaluate the effect of addition of surface treated Aluminum oxide nano fillers on some properties of heat cured (PMMA). Materials and methods: In addition to controlled group of heat cured PMMA the silanized (Al2O3) nanoparticles was added to PMMA powder by weight in three different percentages 1wt%, 2wt% and 3wt%, mixed by probe ultra-sonication machine. 200 specimens were constructed and divided into 5 groups according to the test (e
... Show MoreThis study was designed to evaluate the role of single session autologous facial fat grafting in correcting facial asymmetries after mixing it with platelet-rich fibrin (PRF) and injecting them into rich vascular facial muscular plane.
Fifteen patients (12 females and 3 males) with age ranging from 18 years to 40 years were included in this study and followed up during 6 months, all the patients were treated in the Al-Shaheed Ghazi Al-Hariri for specialized surgeries hospital (Medical City, Baghdad, Iraq).
Auto
The long – term behaviour of polyethylene products used out doors is affected by weathering. In the present work,
weathering test was carried out to find the effect of the environment conditions on the mechanical properties of
HDPE/LLDPE blends with different weight percents (0, 15, 30, and 45 %) relative to the LLDPE by increasing the
exposure times to (100, 150, 200, 250, 300) hr.
A series of tests (destructive), tensile, impact and hardness were carried out on the prepared samples, the results
obtained declare the changes on the material behaviour from ductile to brittle and the polymer shows a decline in the
mechanical properties with increasing the exposure times.
In the present work empirical equations were r
Zinc oxide nanoparticles sample is prepared by the precipitation method. This method involves using zinc nitrate and urea in aqueous solution, then (AgNO3) Solution with different concentrations is added. The obtained precipitated compound is structurally characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The average particle size of nanoparticles is around 28nm in pure, the average particle size reaches 26nm with adding AgNO3 (0.05g in100ml =0.002 M) (0.1g in100ml=0.0058M), AgNO3 (0.2g in 100ml=0.01M) was 25nm. The FTIR result shows the existence of -CO, -CO2, -OH, and -NO2- groups in sample and oxides (ZnO, Ag2O).and used an
... Show MoreAb – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreThis study examined the correlation between binder-level fatigue properties and mixture-level cracking resistance in asphalt binders modified with five Nanomaterials (NMs): Nano-Silica (NS), Nano-Alumina (NA), and Nano-Titanium dioxide (NT) at 2%, 4%, and 6% as well as Nano-Zinc oxide (NZ) and Carbon Nanotubes (CNTs) at 1%, 2%, and 3%. Modified binders were subjected to Rolling Thin-Film Oven Test (RTFOT) and Pressure Aging Vessel (PAV) aging and tested at 25 °C using the Linear Amplitude Sweep (LAS) test to determine fatigue life (Nf) and the fatigue parameter G*.sin δ. The corresponding asphalt mixtures were evaluated using the IDEAL-CT test. The results indicated strong correlations between binder and mixture performance for
... Show MoreObjective: Econazole nitrate (ECZ) is one of the triazole antifungal drugs with poor aqueous solubility and dissolution rate; there is a need for enhancement of solubility. Therefore; inclusion complexation with β cyclodextrin (βCD) was performed. Methods: In this study kneading method and co-evaporation method of preparation of inclusion complex between βCD and ECZ using two molar ratios of βCD. The solubility of these complexes in isotonic saline solution and distilled water was studied. Complexes prepared by kneading method were used for the preparation of different ophthalmic gel formulas using carbomer (CB) and sodium carboxymethylcellulose (sod CMC) as a gelling agent. The release profile and the rheological behaviour of the gel w
... Show MoreThe aim of the present study was to develop theophylline (TP) inhalable sustained delivery system by preparing solid lipid microparticles using glyceryl behenate (GB) and poloxamer 188 (PX) as a lipid carrier and a surfactant respectively. The method involves loading TP nanoparticles into the lipid using high shear homogenization – ultrasonication technique followed by lyophilization. The compositional variations and interactions were evaluated using response surface methodology, a Box – Behnken design of experiment (DOE). The DOE constructed using TP (X1), GB (X2) and PX (X3) levels as independent factors. Responses measured were the entrapment efficiency (% EE) (Y1), mass median
... Show More