Community detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algorithms have been implemented to unfold the structures of communities, the influence of NMI on the Q, and vice versa, between a detected partition and the correct partition in signed and unsigned networks is unclear. For this reason, in this paper, we investigate the correlation between Q and NMI in signed and unsigned networks. The results show that there is no direct relationship between Q and NMI in both types of networks.
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local
... Show MoreDensely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a si
... Show MoreA network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optim
... Show MorePhytoplankton community is a model for of monitoring aquatic systems and interpreting the environmental change in aquatic systems. The present study aimed to forecast environmental parameters that drive the change of phytoplankton community structure in the lake. The present study was carried out in Baghdad Tourist Island Lake (BTIL) for the period From October 2021 to May 2022. The study included the quality and quantity of phytoplankton, moreover, the highest and lowest value of the physical and chemical parameters were (Water temperature (13-30 °C), Light penetration (94-275cm), electric conductivity (837-1128 µS/cm), salinity (0.5-0.7 ‰), pH (7-8.2), total alkalinity (126-226 mg CaCO3/L), total Hardness (297-395 mg CaCO3/L
... Show MorePhytoplankton community is a model for of monitoring aquatic systems and interpreting the environmental change in aquatic systems. The present study aimed to forecast environmental parameters that drive the change of phytoplankton community structure in the lake. The present study was carried out in Baghdad Tourist Island Lake (BTIL) for the period From October 2021 to May 2022. The study included the quality and quantity of phytoplankton, moreover, the highest and lowest value of the physical and chemical parameters were (Water temperature (13-30 °C), Light penetration (94-275cm), electric conductivity (837-1128 µS/cm), salinity (0.5-0.7 ‰), pH (7-8.2), total alkalinity (126-226 mg CaCO3/L), total Hardness (297-395 mg CaCO3/L), Ca
... Show MoreBusiness organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show More