Community detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algorithms have been implemented to unfold the structures of communities, the influence of NMI on the Q, and vice versa, between a detected partition and the correct partition in signed and unsigned networks is unclear. For this reason, in this paper, we investigate the correlation between Q and NMI in signed and unsigned networks. The results show that there is no direct relationship between Q and NMI in both types of networks.
Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MorePhytoplankton community is a model for of monitoring aquatic systems and interpreting the environmental change in aquatic systems. The present study aimed to forecast environmental parameters that drive the change of phytoplankton community structure in the lake. The present study was carried out in Baghdad Tourist Island Lake (BTIL) for the period From October 2021 to May 2022. The study included the quality and quantity of phytoplankton, moreover, the highest and lowest value of the physical and chemical parameters were (Water temperature (13-30 °C), Light penetration (94-275cm), electric conductivity (837-1128 µS/cm), salinity (0.5-0.7 ‰), pH (7-8.2), total alkalinity (126-226 mg CaCO3/L), total Hardness (297-395 mg CaCO3/L), Ca
... Show MorePhytoplankton community is a model for of monitoring aquatic systems and interpreting the environmental change in aquatic systems. The present study aimed to forecast environmental parameters that drive the change of phytoplankton community structure in the lake. The present study was carried out in Baghdad Tourist Island Lake (BTIL) for the period From October 2021 to May 2022. The study included the quality and quantity of phytoplankton, moreover, the highest and lowest value of the physical and chemical parameters were (Water temperature (13-30 °C), Light penetration (94-275cm), electric conductivity (837-1128 µS/cm), salinity (0.5-0.7 ‰), pH (7-8.2), total alkalinity (126-226 mg CaCO3/L), total Hardness (297-395 mg CaCO3/L
... Show MoreBusiness organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreMicrofinance Institutions (MFIs) offers small loans with easy repayment system and till now these institutions have served millions of needy people around the globe. This study highlights the hurdles influence the smooth working and growth of Microfinance institution in Egypt. The structured interviews were conducted from the top and mid-level managers of MFI's. This study revealed that interest rate, political and economic conditions, corruption, customer outreach, competition and technology are the important elements for MFI's success. It is evident that lack of use of technology and less importance drawn on customer outreach programs are the main challenges of MFI's in Egypt. This study provides a roadmap for practitioners and strategic
... Show More