The aim of this study to identify the effect of using two strategies for active learning ( Jigsaw Strategy & Problems Solving) in learning some balanced beam's skills in artistic gymnastics for women , as well as to identify the best of the three methods (jigsaw strategy , problems solving and the traditional method) in learning some skills balance beam , the research has used the experimental methodology, and the subject included the students of the college of Physical Education and Sports Sciences / University of Baghdad / third grade and by the lot was selected (10) students for each group of groups Search three and The statistical package for social sciences (SPSS) was used means, the standard deviation and the (T.test), the one way a nova and the LSD test. A number of conclusions were reached, the researcher has concluded that using jigsaw strategy, problem solving and the traditional method has a positive effect on learning some balance beam's skills under study. However, his effect varies among the research groups. The experimental group that applied the jigsaw strategy has surpassed the groups , The second was the problem solving strategy and finally the traditional method.
The current study aims to develop a teaching design in accordance with cluster thinking strategies and explore the effect of this teaching design on students’ achievement in science. To this end, the null hypothesis was adopted: there is no statistically significant difference at the level of (0, 05) between experimental group who adopted the teaching design in learning science and control group who follow the traditional method in learning the same subject. To test the null hypothesis, total of (74) students from Al-Alaama Hussain Mahfooth intermediate school were selected intentionally for the academic year 2016-2017. The sample divided into two equal groups when all the variables (age, prior achievement of science,
... Show MoreTo date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreThe research aims to identify the impact of the visual teaching strategy by using infographics mathematics achievement for intermediate grade students. The experimental research method was adopted, as the experimental design of two independent and equal groups with a post test was used, whereas the experiment was applied on a sample consisting of (52) male students from first- intermediate grade students in (Al-Haq Al-Mubin intermediate school for Boys) of the General Directorate in Anbar Governorate - Department Education in Fallujah for the academic year (2021-2022), and the research sample was distributed equally on the two research groups, and Division (B) was chosen randomly to be the experimental group, while Division (A) was the cont
... Show MoreIn this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreTraction force and power requirement when performing primary tillage occupy the minds of almost farmers, this field research had aim to determine and calculate the pulling force of the most commonly used moldboard and chisel plows, the research conducted in silt clay loam for chisel and moldboard plows as the main factor, two depths of tillage 18 and 25 cm as a second factor and three speeds of tractor 2.55, 4.30 and 6.15 km.h-1 as a third factor. Moldboard plow recorded least traction force 7.550 kN, drawbar power 11.583 hp, power losses due to slippage 1.088 hp, power on the rear axle of the tractor 15.770 hp and brake horse power 17.495 hp. Chisel plow recorded best traction efficiency 76.217 % and total traction efficiency 68.659 %. Dep
... Show MoreIn the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More