A numerical investigation of mixed convection in a horizontal annulus filled with auniform fluid-saturated porous medium in the presence of internal heat generation is carried out.The inner cylinder is heated while the outer cylinder is cooled. The forced flow is induced by thecold outer cylinder rotating at a constant angular velocity. The flow field is modeled using ageneralized form of the momentum equation that accounts for the presence of porous mediumviscous, Darcian and inertial effects. Discretization of the governing equations is achieved usinga finite difference method. Comparisons with previous works are performed and the results showgood agreement. The effects of pertinent parameters such as the Richardson number and internalRayleigh number on the flow and heat transfer characteristics are considered in the present study.The obtained results depict that the Richardson number plays a significant role on the heattransfer characterization within the annulus. The present results show that an increase inReynolds number has a significant effect on the flow patterns within the annulus. Categorizationof the flow and isotherms regimes is established for various Richardson numbers (PDF) Convection Heat Transfer in Horizontal Annulus Porous Media with Rotating Outer Cylinder. Available from: https://www.researchgate.net/publication/320934745_Convection_Heat_Transfer_in_Horizontal_Annulus_Porous_Media_with_Rotating_Outer_Cylinder [accessed Mar 29 2024].
Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreThis article is an endeavour to highlight the relationship between social media and language evolution. It reviews the current theoretical efforts on communication and language change. The descriptive design, which is theoretically based on technological determision, is used. The assumption behind this review is that the social media plays a significant role in language evolution. Moreover, different platforms of social media are characterized by being the easiest and fastest means of communication. It concludes that the current theoretical efforts have paid much attention to the relationship between social media and language evolution. Such efforts have highlighted the fact that social media platforms are awash with a lot of acronyms, cybe
... Show MoreThis research focuses on the services provided by news websites (IMN, Youm7, Huffington Post Arabic) to its audience of Internet users, as well as materials posted through its pages, trying to monitor and explain them to identify their types & features, and it›s functions, whether informational or non-informational, to know the technical potential of each of the news sites, with the entry of the latest technology information. The research used the analysis method to achieve the research objectives within the period from 1/1 to 31/1/2017. The researchers used the content analysis tool as a research tool to analyze the news sites and to know the services they provide through their pages. The research was divided into three parts, the
... Show MoreIn this paper, nanofluid of TiO2/water of concentrations of 0.002% and 0.004% volume was used. This nanofluid was flowing through heat exchanger of shell and concentric double tubes with counter current flow to the hot oil. The thermal conductivity of nanofluid is enhanced with increasing concentrations of the TiO2, this increment was by 19% and 16.5% for 0.004% and 0.002% volume respectively relative to the base fluid (water). Also the heat transfer coefficient of the nanofluid is increased as Reynold's number and nanofluid concentrations increased too. The heat transfer coefficient is increased by 66% and 49% for 0.004% and 0.002% volume respectively relative to the base fluid. This study showed that the friction
... Show MoreThis study aims to evaluate and compare the cytotoxicity and biocompatibility of a modified heat-cured acrylic denture base material containing 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME) with those of nonmodified PMMA. Discs with a diameter of 12 mm and a thickness of 2 mm were prepared using a heat-cured PMMA denture base material and divided into control and experimental groups. The experimental group was modified with 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME). The modified and nonmodified materials were tested via FTIR, and the effect of modification on surface roughness was evaluated with AFM. An in vitro test was conducted to examine the cytotoxicity and biocompatibility of heat-cured acry
... Show MoreThe aim of this work is studying the binary system ??'??? Ni?)with two ratios (y=36,80) by using casting method for preparing the samples.Magnetic and Mechanical properties have been studidt different httrea^nttem^rature.All the alloys were found a ferromagnetic behavior and sensitive to the heat treatment. Best properties were found at the heat treatment 1100 C°.A significant different results were found above 1100C° for lower magnetic and mechanical values. This is possibly due to the change on the degree of magnetic moment orders, in which most of the moments are started to remove from coupled ferromagnetically.?
Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreA total of (25) stool samples were collected from children and adults (2- 4) years old suffering from diarrhea to isolate E. coli strains that produce heat-stable enterotoxin a (STa), and after performing microscopic examination, cultural characterization and biochemical identification only (11) isolates showed positive E. coli. STa activity was estimated by using suckling mouse assay (SMA) and from these (11) isolates only (5) showed STa activity and the one with the highest STa activity was selected for large scale production of STa, which was followed by partial purification using ion-exchange chromatography (normal phase) using DEAE sephadex A-50 column. After purification and determination of protein concentration by using the standard
... Show MoreAbstract
In the present work, thermal diffusivity and heat capacity measurements have been investigated in temperature range between RT and 1473 K for different duplex stainless steel supplied by Outokumpu Stainless AB, Sweden. The purpose of this study is to get a reliable thermophysical data of these alloys and to study the effect of microstructure on the thermal diffusivity and heat capacity value. Results show the ferrite content in the duplex stainless steel increased with temperature at equilibrium state. On the other hand, ferrite content increased with increasing Cr/Ni ratio and there is no significant effect of ferrite content on the thermal diffusivity value at room temperature. Furthermore, the heat capacity of all sam
... Show MoreCopper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline