A numerical investigation of mixed convection in a horizontal annulus filled with auniform fluid-saturated porous medium in the presence of internal heat generation is carried out.The inner cylinder is heated while the outer cylinder is cooled. The forced flow is induced by thecold outer cylinder rotating at a constant angular velocity. The flow field is modeled using ageneralized form of the momentum equation that accounts for the presence of porous mediumviscous, Darcian and inertial effects. Discretization of the governing equations is achieved usinga finite difference method. Comparisons with previous works are performed and the results showgood agreement. The effects of pertinent parameters such as the Richardson number and internalRayleigh number on the flow and heat transfer characteristics are considered in the present study.The obtained results depict that the Richardson number plays a significant role on the heattransfer characterization within the annulus. The present results show that an increase inReynolds number has a significant effect on the flow patterns within the annulus. Categorizationof the flow and isotherms regimes is established for various Richardson numbers (PDF) Convection Heat Transfer in Horizontal Annulus Porous Media with Rotating Outer Cylinder. Available from: https://www.researchgate.net/publication/320934745_Convection_Heat_Transfer_in_Horizontal_Annulus_Porous_Media_with_Rotating_Outer_Cylinder [accessed Mar 29 2024].
The problem of reconstruction of a timewise dependent coefficient and free boundary at once in a nonlocal diffusion equation under Stefan and heat Flux as nonlocal overdetermination conditions have been considered. A Crank–Nicolson finite difference method (FDM) combined with the trapezoidal rule quadrature is used for the direct problem. While the inverse problem is reformulated as a nonlinear regularized least-square optimization problem with simple bound and solved efficiently by MATLAB subroutine lsqnonlin from the optimization toolbox. Since the problem under investigation is generally ill-posed, a small error in the input data leads to a huge error in the output, then Tikhonov’s regularization technique is app
... Show MoreElectron Transfer reaction rate constants at Semiconductor / Liquid interfaces are calculated dy using the Fermi Golden Rule for Semiconductor. The reorganization energy   eVï„ is computed for Semiconductor / Liquid Interfaces system in two solvents and compared with experimental value. The driving force (free energy) ΔGo(eV) is calculated depending on spectrum Ru(H2L`)2 (NCS)2 . The transfer is treated according with weak coupling (nonadiabatic) for two – state level between the Semiconductor and acceptor molecule state.
Theoretically description of the electron transfer of the electron transfer of met/mol has been investigated in this work according to the quantum theory. By using a model that is derived depending on the first order perturbation theory, the rate constant at met/mol interface can be calculated with the calculated reorganization energy. The reorganization energy that is evaluated according to the outer sphere model is based on the electstatistics potential of the molecular donor and acceptor. The molecular parameters introduced in this model are the molecular weight, mass, density, and radius of molecule have been evaluated according to the apparent molar volume using spherical approach. Th
... Show MoreThis study aims at defining the concept of the fragile state, a term that came into existence in 2014, when the states that had internal Problems and external interventions were referred to as the failure states. However, the indicators for their designation and the criteria adopted are 12 indicators that address all aspects of the State’s duties vis-a-vis its citizens. The study examined the reasons that led to the continuation of Iraq within the fragile states, and the selection of the five years within the time limits of the study due to the factors that led to the decline of Iraq and falling back within the most fragile countries. The study dealt with the fragile state challenges to the media reality as a result of the change of it
... Show MoreThe interest of application of liquid membrane (pertraction) processes for recovery of medicinal compounds from dilute ammoniacal leach solutions is demonstrated. Selectivity of the liquid membrane ensures a preferential transport of the desired solute from the native extract into the strip solution, vinblastine was successfully extracted from basic media (pH 9.2) and stripped by acidic media of sulfuric acid (pH= 1.3) applying continuous pertraction in a rotating discs contactor and using n-decane as liquid membrane. Transport of vinblastine in three-liquid-phase system was studied and performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters (apparent rate constants of th
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
Porous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
Cadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated det
Porous Silicon (PS) layer has been prepared from p-type silicon by electrochemical etching method. The morphology properties of PS samples that prepared with different current density has been study using atom force measurement (AFM) and it show that the Layer of pore has sponge like stricture and the average pore diameter of PS layer increase with etching current density increase .The x-ray diffraction (XRD) pattern indicated the nanocrystaline of the sample. Reflectivity of the sample surface is decrease when etching current density increases because of porosity increase on surface of sample. The photolumenses (PL) intensity increase with increase etching current density. The PL is affected by relative humidity (RH) level so we can use
... Show More