Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the critical factor in the trade-off between thermoelectric materials. Based on the Boltzmann transport equation (BTE) and Barden-Shockley deformation potential (DP) theory, we carried out a series of investigative calculations related to the thermoelectric properties and characterization of these materials. The calculated dimensionless figure of merit (ZT) values of 2DBL-MSe2 (M = Zr, Hf, Mo, W) at room temperature were 3.007, 3.611, 1.287, and 1.353, respectively, with convenient electronic densities. In addition, the power factor is not critical in the trade-off between thermoelectric materials but it can indicate a good thermoelectric performance. Thus, the overall thermal conductivity and power factor must be considered to determine the preference of thermoelectric materials.
In this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
In this paper, we have generalized the concept of one dimensional Emad - Falih integral transform into two dimensional, namely, a double Emad - Falih integral transform. Further, some main properties and theorems related to the double Emad - Falih transform are established. To show the proposed transform's efficiency, high accuracy, and applicability, we have implemented the new integral transform for solving partial differential equations. Many researchers have used double integral transformations in solving partial differential equations and their applications. One of the most important uses of double integral transformations is how to solve partial differential equations and turning them into simple algebraic ones. The most important
... Show MoreThis paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type
... Show MoreThis paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
In this study, an analysis of re-using the JPEG lossy algorithm on the quality of satellite imagery is presented. The standard JPEG compression algorithm is adopted and applied using Irfan view program, the rang of JPEG quality that used is 50-100.Depending on the calculated satellite image quality variation, the maximum number of the re-use of the JPEG lossy algorithm adopted in this study is 50 times. The image quality degradation to the JPEG quality factor and the number of re-use of the JPEG algorithm to store the satellite image is analyzed.
In this study, light elements for 13C , 16O for (α,n) and (n,α) reactions as well as α-particle energy from 2.7 MeV to 3.08 MeV are used as far as the data of reaction cross sections are available. The more recent cross sections data of (α,n) and (n,α) reactions are reproduced in fine steps 0.02 MeV for 16O (n,α) 13C in the specified energy range, as well as cross section (α,n) values were derived from the published data of (n,α) as a function of α-energy in the same fine energy steps by using the principle inverse reactions. This calculation involves only the ground state of 13C , 16O in the reactions 13C (α,n) 16O and 16O (n,α) 13C.
Determination of the level of adipokines (obestatin, vaspin, tumor necrosis factor-? and interleukin-6)in hypo-and hyperthyroid patients from Educational Baghdad Hospital in Baghdad City was investigated. Fifty patients with hypothyroidism and Fifty patients with hyperthyroidism were selected. A control group of thirty euthyroid persons was included. Blood was collected by vein puncture and serum was separated and stored at –20C. Adipokines (obestatin, vaspin, tumor necrosis factor-? and interleukin-6) were estimated using ELISA method. The findings show a significant (p<0.05) increase in obestatin level in hypothyroid patients, while there is no significant difference in hyperthyroid patientsas compared with the euthyroid subjects.
... Show MoreThe aim of this paper is to demonstrate the effect of Na2[Fe(CN)5.NO].2H2O impurity (0.1 M) concentration on the dielectrical properties of poly (P-Aminobenzaldehyde) terminated by pheneylenediamine in the frequency and temperature ranges (1-100)KHz and (283-348) K respectively.These properties include dissipation factor, series and parallel resistance, series and parallel capacitance, real and imaginary part of the dielectric constant, a.c conductivity and impedance (real and imaginary) part, that have been deduced from equivalent circuit. The investigation shows that adding Na2[Fe(CN)5.NO].2H2O as additive to the polymer lead to increase of the dielectric constant with increasing temperature and it is decreasing with increasing the freq
... Show More