Increasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeability and porosity values. These values directly affect the calculation of net pay thickness for each layer in the reservoir and consequently affect the target of estimating reservoir initial oil in place (IOIP). Also, the main challenge to the static modeling of such reservoirs is dealing with tight reservoir characteristics which cause major reservoir heterogeneity and complexities that are problematic to the process of modeling reservoir simulation. Twenty seven porosity and permeability measurements from Sadi/Tanuma reservoir were used to validate log interpretation data for model construction. The results of the history matching process of the constructed dynamic model is also presented in this paper, including data related to oil production, reservoir pressure, and well flowing pressure due to available production.
Rock type identification is very important task in Reservoir characterization in order to constrict robust reservoir models. There are several approaches have been introduced to define the rock type in reservoirs and each approach should relate the geological and petrophysical properties, such that each rock type is proportional to a unique hydraulic flow unit. A hydraulic flow unit is a reservoir zone that is laterally and vertically has similar flow and bedding characteristics. According to effect of rock type in reservoir performance, many empirical and statistical approaches introduced. In this paper Cluster Analysis technique is used to identify the rock groups in tertiary reservoir for Khabaz oil field by analyses variation o
... Show MoreThe study includes the epipelic algae in Hemren reservoir, for the period between Januarys to October 2000 .The samples were collected from three selected sites at north, middle and south of reservoir. A total of 96 taxa of epipelic algae were identified. The diatoms were the dominated by 82 taxa represented 85.4% of the total identified species, followed by blue-green algae (cyanophyta) of 6.3 taxa (6%), and then green algae (chlorophyta) of 5.2 taxa (5%). One species was recorded for each crysophyta, euglenophyta and pyrrophyta. The seasonal variation for the cell density showed two peaks during spring and autumn seasons. Few species were dominated during the most studied period such as Achnanthes minutissima, Navicula cryptocephala
... Show MoreThe Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units. This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized poros
... Show MoreThe Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.
This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized por
... Show MoreKnowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani
... Show More
Predicting peterophysical parameters and doing accurate geological modeling which are an active research area in petroleum industry cannot be done accurately unless the reservoir formations are classified into sub-groups. Also, getting core samples from all wells and characterize them by geologists are very expensive way; therefore, we used the Electro-Facies characterization which is a simple and cost-effective approach to classify one of Iraqi heterogeneous carbonate reservoirs using commonly available well logs.
The main goal of this work is to identify the optimum E-Facies units based on principal components analysis (PCA) and model based cluster analysis(MC
... Show MoreSince the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data
... Show More