Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
In this research, (MOORA) approach based– Taguchi design was used to convert the multi-performance problem into a single-performance problem for nine experiments which built (Taguchi (L9) orthogonal array) for carburization operation. The main variables that had a great effect on carburizing operation are carburization temperature (oC), carburization time (hrs.) and tempering temperature (oC). This study was also focused on calculating the amount of carbon penetration, the value of hardness and optimal values obtained during the optimization by Taguchi approach and MOORA method for multiple parameters. In this study, the carburization process was done in temperature between (850 to 950 ᵒC) for 2 to 6
... Show MoreLiquid membrane electrodes for the determination iron(III) were constructed based on chloramphenicol sodium succinate and iron(III) CPSS-Fe(III) as ion pair complex, with four plasticizers Di-butyl phosphate (DBP); Di-butyl phthalate (DBPH); Di-octyl phthalate (DOP); Tri-butyl phosphate (TBP); in PVC matrix . These electrodes give Nernstian and sub-Nernstian slopes (19.79, 24.60, 16.01 and 13.82mV/decade) and linear ranges from (1x10-5-1x10-2 M, 1x10-5-1x10-2 M, 1x10-6-1x10-2 M and 1x10-5-1x10-2 M) respectively. The best electrode was based on DBP plasticizer which gave a slope 19.79 mV/decade, correlation coefficient 0.9999, detection limit of 9×10-6 M, lifetime 37 day displayed good stability and reproducibility and used to determine
... Show MoreReduce the required time for measuring the permeability of clayey soils by using new manufactured cell
The current problem is summarized in what is called the development failing experience
in comprehencing the studying materials , so the students will feel worry of repeating failure
in he future , so he would seek blind keeping on heart for the studying material bond this isbad due to the forgetting in the future , one side of thesis research problem is that there is
many contradictory researches result in relation to the learning styles which impose the
nessicity to find results lessen this contradiction . the importance of the research is
summarized in the importance of the subject under the study , in that the researcher ( as in
her knowledge ) did not find a thesrs tackling the subject of the distinguished students
The Battle of Kadesh is replete with many military arrangements that reflect the tremendous development of war preparations in the thirteenth century BC; where the expressive pictures the Egyptians left on some of the walls of their temples show the tremendous ability to organize and divide the forces and the great development that affected the war machine. Furthermore, the text accompanied these pictures reveal some news about that battle, which is considered one of the most important wars in the ancient world. Thus, the importance of the study lies in the fact that it examines one of the most important battles of the ancient Near East, the results of which had great repercussions on the region. This is because it is the most abundant B
... Show MoreA new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2
... Show More