Formation evaluation is a critical process in the petroleum industry that involves assessing the petrophysical properties and hydrocarbon potential of subsurface rock formations. This study focuses on evaluating the Mauddad Formation in the Bai Hassan oil field by analyzing data obtained from well logs and core samples. Four wells were specifically chosen for this study (BH-102, BH-16, BH-86, and BH-93). The main objectives of this study were to identify the lithology of the Mauddud Formation and estimate key petrophysical properties such as shale volume, porosity, water saturation, and permeability. The Mauddud Formation primarily consists of limestone and dolomite, with some anhydrites present. It is classified as a clean formation due to its low shale volume of approximately 17%. The results of the study show a low water saturation of around 30% and an effective porosity reaching up to 32% (with an average of 11%). The Mauddud Formation was further analyzed using the cluster analysis method, which identified four distinct hydraulic flow units (HFUs). The permeability of the Mauddud Formation was predicted using the flow zone indicator method, revealing a range from moderate to sound quality, averaging approximately 22 md.
Sadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.
Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.
In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.
The reservoir damage severity has been taken as "Shallow–Medium– Sever
... Show MoreLimestones have considerable commercial importance because they are used as building stones and are widely used for flooring and interior and exterior facings. On the other hand, the reserve calculation reveals the economic effectiveness of the investigation. This study aims to calculate the reserve of the middle Miocene limestone for engineering purposes. The limestone beds of the Nfayil Formation in Central Iraq have been studied over 15 outcrop sections. The Nfayil bed has an average thickness of about 1.64 m, while the overburden has an average of about 0.93 m. The average bulk density of limestone is 2.1 gm/cm3 . Kriging and triangulation method has been adopted and used in the calculation and assessment of reserve. The industrial laye
... Show MoreA detailed systematic study of calcareous nannofossils was carried out for the Jaddala Formation in (Aj-10) well, Central Iraq. Seventy one species belong to twenty four genera of calcareous nannofossils were identified including sixty two of them were previously named and nine species were identified for the first time and they would not be given names until more information is obtained in the future to support this identification.
It is a recorded of five biostratigraphic zone, which suggested the age of the Jaddala Formation to be of early to late Eocene. The recorded biozone includes the following: Reticulofenestra dictyoda (Deflandre in Deflandre & Fert, 1954) Stradner & Edwards, 1968 Partial Range Biozone (CNE 5); Discoa
The Mishrif Formation is one of the most important geological formations in Iraq consisting of limestone, marl, and shale layers since it is one of the main oil producing reservoirs in the country, which contain a significant portion of Iraq's oil reserves. The formation has been extensively explored and developed by the Iraqi government and international oil companies, with many oil fields being developed within it. The accurate evaluation of the Mishrif formation is key to the successful exploitation of this field. However, its geological complexity poses significant challenges for oil production, requiring advanced techniques to accurately evaluate its petrophysical properties.
This study used advanced well-logging analysi
... Show MoreShiranish has been studied at Hijran section near Erbil city, NE Iraq. Fifty two thin-sections were prepared to study them under polarized microscope, to determine the petrographic component, organic content and digenetic processes. Rock units subdivided into four rock beds, as follows: dolostone, foraminiferal biomicrite, poorly washed biomicrite and micrite. Vertical succession of Shiranish Formation refers to off-shore quite marine environment.
Bekhme formation, Dernir Dagh well -1 has been divided into two facies units using core
sample slides and depending on sedimentary structures and diagenetic processes .The facies
reflect the environment of the foreslope.This work proves the absence of Bekhme formation
in Dernir Dagh
Well- 1 as a tongue as reported by the Oil Exploration Company. Some species and genera of
bentonic foraminifera were identified. The age of Bekhme formation was estimated
depending on the recognized index fossils to be lower Maastrichtian.
The Quantitative high-resolution planktonic foraminiferal analysis of the subsurface section in three selected wells in the Ajeel Oil Field (Aj-8, Aj-12, and Aj-15) in Tikrit Governorate, Central Iraq has revealed that Shiranish Formation deposited in Late Campanian- Latest Maastrichtian age. This formation consists mainly of marly and marly limestone yielding diverse planktonic foraminiferal assemblages and calcareous benthic foraminifera, with a total of 46 species that belong to 23 genera, Three zones and four subzones, which cover the Late Campanian to the Latest Maastrichtian, were identified based on the recorded planktonic foraminifera and their ranges. They are as follows:1. Globotruncana aegyptiaca Zone that dated to be Lat
... Show MoreShiranish Formation (Late Campanian- Maastrichtian) that cropping out north east Iraq, is studied by microfacies analysis of 52 thin section collected from Hijran Section, about 10 km west Shaqlawa Town, Governorate of Erbil. According to petrography, mineralogy and organic contents, rocks are subdivided to crystalline carbonate and microfacies units (biowackstone, packstone, and mudstone facies). Biowackstone facies have high ratio of the rock components, while the other facies have low ratio. Microfacies analysis led to relatively quiet deep marine environment.