ABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction. PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductivity displayed an increase when the temperature is increased from 323.15k to 453.15k. Activation energies were determined from plots of Arrhenius for all nanocomposites. The findings indicated that the activation energy decrease with increasing the weight percentage of Ag nanoparticles in the nanocomposites.
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat
Corrosion inhibiting admixtures are unique among other methods to protect reinforced concrete from corrosion damage. In this study, the effect of furfural on the fresh and hardened properties of concrete mixes of 35 and 45 MPa compressive strengths as well as the corrosion inhibition of furfural was evaluated. Furfural was added at different dosages (1, 2 and 3% by weight of cement) with and without superplasticizer (HRWR). Different electrochemical measurements were performed (Half-cell potential, Tafel plot and linear polarization resistance). Electrochemical measurements confirmed that furfural dramatically reduces the rate of corrosion; the inhibition efficiencies were 62.7 and 63.8 % due to 3% furfural addition to 35 and 45MPa-concr
... Show MoreIn this work, the linear properties of Vitamin D3-5000IU soft gel were investigated by measuring its absorption and fluorescence spectra. It was observed that there was a shift towards longer wavelength within limits (75 nm), with quantitative efficiency equal to (33.58%). The values of absorbance were used to calculate the extinction coefficient, optical refractive index, optical conductivity and optical dielectric constant values.
The non-linear properties of Vitamin D3-5000IU soft gel was also studied using the Z-Scan technique by using Neodymium-doped Yttrium Garnet (Nd: YAG) continuous laser (CW) emitting in &n
... Show MoreA progressive increase in the desire for environmentally friendly lubricants by users and strict government regulations for the use of these lubricants has provided an opportunity to use plant oils as biodegradable lubricants, therefore vegetable oils have been investigated to replace oil lubricants because of their maintaining the conditions of nature (environment) properties. In this paper, the influences of the blending ratio of mustard seeds oil with commercial mineral oil (SAE40) on the tribological characteristics were investigated and compared with mineral oil using the four-ball tribotester. Mustard seeds oil was blended with mineral oil at a volumetric ratio ranging from 22.5 to 90%. All experimental works were
... Show MoreThe vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri
A nanocrystalline thin films of PbS with different thickness (400, 600)nm have been prepared successfully by chemical bath deposition technique on glass and Si substrates. The structure and morphology of these films were studied by X-ray diffraction and atomic force microscope. It shows that the structure is polycrystalline and the average crystallite size has been measured. The electrical properties of these films have been studied, it was observed that D.C conductivity at room temperature increases with the increase of thickness, From Hall measurements the conductivity for all samples of PbS films is p-type. Carrier's concentration, mobility and drift velocity increases with increasing of thickness. Also p-PbS/n-Si heterojunction has been
... Show MoreCeramics type Yttrium oxide with Silicon carbide. were selected to investigate its sintered density, microstructure and electrical properties, after adding V2O5, of 100 nm grain size. Different weight percentages ranging from (0.01,0.02,0.03 and 0.04) were used. Dry milling applied for twelve hours. The pelletized samples were sintered at atmospheric of static air and at sintering temperature 1400 ˚C, for three hours. The crustal structure test shoes the phase which is yttrium silicon carbide Scanning electron microscopy, scan sintered microstructure. Samples after sintering were electrically investigated by measuring its capacitance, dielectric constant and their results showed increasing after added V2O5 particles at the combinat
... Show MorePolyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI
The purpose of this paper is to identifying some of the physical, kinetic and electrical capabilities of the working muscles of patients with simple hemiplegic cerebral palsy, preparation of special exercises (rehabilitation and water) accompanied by symmetrical electrical stimulation in the rehabilitation of working muscles for patients with simple hemiplegic cerebral palsy, and identifying the effect of exercises, especially (rehabilitation and water), accompanied by symmetrical electrical stimulation, on some physical, kinetic and electrical capabilities in rehabilitating working muscles for patients with simple hemiplegic cerebral palsy. The researcher used the experimental approach with a one-group design with two pre and post-tests du
... Show More