Preferred Language
Articles
/
LxeIDpABVTCNdQwCOYP0
A Study of Crystallographic and DC Electrical Characteristics of PPy/Ag Nanocomposites

ABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction.  PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductivity displayed an increase when the temperature is increased from 323.15k to 453.15k. Activation energies were determined from plots of Arrhenius for all nanocomposites. The findings indicated that the activation energy decrease with increasing the weight percentage of Ag nanoparticles in the nanocomposites.

Crossref
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
A Comparative Study on the Electrical Characteristics of Generating Plasma by Using Different Target Sources

In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur

... Show More
Scopus (11)
Crossref (5)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Nov 01 2022
Journal Name
Optik
Optical and structural characteristics of pulsed DC magnetron sputtered Ce1- xTixOy coatings

This contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res

... Show More
Publication Date
Tue Nov 01 2022
Journal Name
Optik
Optical and structural characteristics of pulsed DC magnetron sputtered Ce1−xTixOy coatings

This contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Electrical, thermal and optical characteristics of plasma torch

Non thermal argon plasma needle at atmospheric pressure was constructed. The experimental set up was based on simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases which flow at atmospheric pressure. A high AC power supply was used with 9.6kV peak to peak and 33kHz frequency. The plasma was generated using two electrodes. The voltage and current discharge waveform were measured. The temperature of Ar gas plasma jet at different gas flow rate and distances from the plasma electrode was also recorded. It was found that the temperature increased with increasing frequency to reach the maximum value at 15 kHz, and that the current leading the voltage, which demonstra

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Apr 09 2013
Journal Name
Chemistry And Materials Research
Hydrogen Bonds Effects on the Electrical Properties of Pectin/Pva Graphene Nanocomposites

Electrical properties were studied for Pectin/PVA graphene composites films and the effect of aqueous interaction on their properties. The conductivity and the dielectric constant of this composite are important because Polysaccharide like pectin is increasingly being used in biomedical applications and as nanoparticles coating materials. The Dielectric and conductivity of composite films were compared in dry and wet condition the differences in the results were attributed to the water molecules and the hydrogen bond which connect the three composite compounds (Pectin, PVA and Graphene) together. These connections were allowed the hydrogen and hydroxyl group’s migrations in the composite super molecules. On the other hand, graphene was pr

... Show More
Preview PDF
Publication Date
Tue Mar 17 2020
Journal Name
Optical And Quantum Electronics
Scopus (23)
Crossref (5)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of

... Show More
View Publication
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 02 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Characteristics of Planar Pbthalocyanine Thin Films

The   electrical     properties   of   thin   film    interdigital    metal­

phthalocyanine - metal devices have been studied with regard to purity and electrode material . Devices utilising phthalocyanines ( H2 Pc ,

NiPc and CuPc) films with Au, Ag , Cu ' In and AI electrodes have been prepared with Pc layers fabricated  from  both as - supplied  Pc powder and entrainer - subeimed  material . The results indicate that

sublimed phthalocyanine with gold electrodes offers the best material

combination with regard to linearity , reversibility and reproducibility. Measurements  of  current &nbs

... Show More
View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The effect of phonons-surface and grain-boundary scattering on electrical properties of metallic Ag

Explain in this study, thickness has an inverse relationship with electrical resistivity and a linear relationship with Grain boundary scattering. According to the (Fuchs-Sondheier, Mayadas-Shatzkces) model, grain boundary scattering leads To an Increase in electrical Resistivity. The surface scattering Coefficient  of Ag, which Fuchs-Sondheier and Mayadas-Shatzkces measured at , Ag's grain boundary reflection coefficient , which Mayadas-Shatzkces measured at , If the concentration of material has an effect on metal's electrical properties, According to this silver is a good electrical conductor and is used frequently in electrical and electronic circuits.

Crossref
View Publication Preview PDF