Preferred Language
Articles
/
LxeDTY8BVTCNdQwCFGrx
Fabrication and Enhancement of Organic Photodetectors Based on Iron Phthalocyanine Films
...Show More Authors

Iron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconductive detector were measured. The performance of the fabricated detector was taken under dark and illumination using two types of light sources: UV LED with wavelength (365[Formula: see text]nm), power of (10[Formula: see text]W) and Tungsten lamp with wavelength range between (500–800) nm and the optical power of (250[Formula: see text]W). The photoresponse enhancement was improved by coating the FePc films with 200[Formula: see text]nm of polyamide nylon polymer. This type of coating, which can be considered as a surface treatment, highly increased the photoresponse of the fabricated FePc UV detector. The results show that the responsivity increased four orders of magnitudes more than the responsivity of the uncoated FePc film. The effects of the coated polymers on the responsivity and the response time of the detector were investigated.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jul 01 2014
Journal Name
Journal Of Nanotechnology & Advanced Materials
Structural and optical properties of SnS thin films
...Show More Authors

Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Optical properties of ZnS and PEDOT thin films
...Show More Authors

Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th

... Show More
Scopus (2)
Scopus
Publication Date
Tue Oct 30 2018
Journal Name
Iraqi Journal Of Physics
Influence of substrates on the properties of cerium -doped CdO nanocrystalline thin films
...Show More Authors

Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
The Effect of Chlorine Concentration on the Optical Constants of SnS Thin Films
...Show More Authors

Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Effect of Annealing Temperature on The Some Electrical Properties of InSb:Bi Thin Films
...Show More Authors

InSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.

View Publication Preview PDF
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
The effect of annealing temperatures on the optical parameters of NiO0.99Cu0.01 thin films
...Show More Authors

NiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Solid State Communications
Influence of In-dopant on the optoelectronic properties of thermal evaporated CuAlTe2 films
...Show More Authors

In the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr

... Show More
View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Solid State Communications
Influence of In-dopant on the optoelectronic properties of thermal evaporated CuAlTe2 films
...Show More Authors

Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Apr 25 2024
Journal Name
Egypt. J.of Appl Sci
Effect of foliar spray of some organic or inorganic fertilizer on leaf and tuber content of N,P and K and its relation to potato tuber quality
...Show More Authors

Publication Date
Fri Jan 10 2025
Journal Name
International Journal Of Scientific Research In Science, Engineering And Technology
Image Cryptography Based on Chebyshev Polynomials and Transposition- Substitution Transformations
...Show More Authors

The confirming of security and confidentiality of multimedia data is a serious challenge through the growing dependence on digital communication. This paper offers a new image cryptography based on the Chebyshev chaos polynomials map, via employing the randomness characteristic of chaos concept to improve security. The suggested method includes block shuffling, dynamic offset chaos key production, inter-layer XOR, and block 90 degree rotations to disorder the correlations intrinsic in image. The method is aimed for efficiency and scalability, accomplishing  complexity order for n-pixels over specific cipher rounds. The experiment outcomes depict great resistant to cryptanalysis attacks, containing statistical, differential and brut

... Show More
View Publication
Crossref