The apoptotic activity of methionine γ- lyase from Pseudomonas putida on cancer cell lines was indicated by measuring the concentration of cytochrome c in the supernatants of cell lines. The result revealed high concentration of cytochrome c in the supernatants of cancer cell lines (RD, AMGM and AMN3) respectively while the concentration of anti-apoptotic protein (Bcl-2) was very low.
In this study, a novel application of lab-scale dual chambered air-cathode microbial fuel cell (MFC) has been developed for simultaneous bio-treatment of real pharmaceutical wastewater and renewable electricity generation. The microbial fuel cell (MFC) was provided with zeolite-packed anodic compartment and a cation exchange membrane (CEM) to separate the anode and cathode. The performance of the proposed MFC was evaluated in terms of COD removal and power generation based on the activity of the bacterial consortium in the biofilm mobilized on zeolite bearer. The MFC was fueled with real pharmaceutical wastewater having an initial COD concentration equal to 800 mg/L and inoculated with anaerobic aged sludge. Results demo
... Show MoreBackground: Parkinson's disease (PD) is a neurodegenerative aging disease, with idiopathic PD being most common. Gastrointestinal tract disorders (GITD) and microbiota changes may trigger idiopathic PD. Neurotoxins from microbiota can travel from the gut to the brain via the brain-gut axis (BGA), leading to α-syn protein misfolding and dopaminergic neuron death. Methods: The aim of the current study was to investigate the link between PD and GITD by measuring several biochemical and immunological markers in 142 patients. The biochemical markers measured were vitamins B6, B12, and D, calcium, serotonin, ghrelin, dopamine, and α-syn protein. The immunological markers included transforming growth factor-beta (TGF-β), tu
... Show MoreSoil and plant contamination with heavy metals is one of the current problems in the world especially contamination with mercury. Heavy metals are very harmful because of their long biological half-lives, non-biodegradable nature and their possibility to accumulate at different body parts. Soil, well water and leafy plant samples (Apium graveoleus, Allium ampeloprasum, Lepidium sativum, Eruca sativa, Petroselinum hortense, Ocimum basilicum , Mentha pulegium) from three different agricultural fields (AL-Musafer village (site 1), AL-Autaifiyah (site 2) and AL-Huriyah (site 3)) in Baghdad government, Iraq were analyzed for mercury concentration. Hg level in so
... Show MoreFaujasite type NaY zeolite catalyst was prepared from locally available kaolin, then the prepared NaY zeolite have been modified by exchanging of sodium ion with ammonium to produce NH4Y zeolite. NH4Y zeolite was converted to HY zeolite by ion exchanging with oxalic acid. Zinc and nickel promoters have been added to the prepared HY zeolite catalyst, and the effect of these promoters on the catalytic activity of the prepared HY catalyst was studied in fluid catalytic cracking process using light gas oil as a feedstock. The experimental results show that the promoted catalyst gives higher gas oil conversion and gasoline yield than HY zeolite catalyst at the same reaction temperature and WHSV. It was also found that the promoted catalyst gi
... Show MoreThe antimicrobial activity of ginger extracts ( cold-water, hot-water, ethanolic and essential oil ) against some of pathogenic bacteria ( Escherichia coli , Salmonella sp , Klebsiella sp , Serratia marcescens, Vibrio cholerae , Staphylococcus aureus , Streptococcus sp) was investigated using Disc diffusion method , and the results were compared with the antimicrobial activity of 12 antibiotics on the same bacteria . The results showed that the ginger extracts were more effective on gram-positive bacteria than gram-negative . V. cholerae and S. marcescens,were the most resistant bacteria to the extracts used , while highest inhibition was noticed against Streptococcus sp (28 mm) . The ethanolic extract showed the broadest antibacterial ac
... Show MoreInfluence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
In this paper, investigates the biosynthesis of gold nanoparticles (AuNPs) by biochemical method using Myrtus communis leaves extract as reducing agent and Chloroauric acid (HAuCl4) as precursors. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and FTIR were used in addition to UV-visible spectroscopy (UV) in order to characterize the AuNPs. The biosynthesized AuNPs exhibited inhibitory effects on alpha amylase and alkaline phosphatase in sera of patient with type 2 Diabetes Miletus and the sera of healthy control subjects; the inhibition percentage with alpha amylase was 72 % and 45 % for patient and control group respectively. Oral consent obtained from the most of patients and healthy subjects before them being under
... Show MoreSeveral new copolymer containing imides were prepared from the corresponding
copolymers containing amic acids using dehydrating agent such as acetyl chloride –
tri ethyl amine mixture. The obtained yields were different ranging from 65% to
80%. Readily polymerized unsaturated copolymers containing imides free radically
using azobisisobuty ronitrile (AIBN) as initiator to yield high molecular weight
copolymers. All the prepared resins were characterized IR. NMR. Elemental
analysis. TG and DTG Techniques.
Seawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov