Many problems are facing the installation of piles group in laboratory testing and the errors in results of load and settlement are measured experimentally may be happened due to select inadequate method of installation of piles group. There are three main methods of installation in-flight, pre-jacking and hammering methods. In order to find the correction factor between these methods the laboratory model tests were conducted on small-scale models. The parameters studied were the methods of installation (in-flight, pre-jacking and hammering method), the number of piles and in sandy soil in loose state. The results of experimental work show that the increase in the number of piles value led to increase in load carrying capacity of piled raft and decrease in settlement value for three methods of installation. The response of increases load capacity for hammering method is the same value of pre-jacking method at the number of piles less than (N=2), while when the number of piles are beyond (N=3 to 9). The load capacity of hammering method is more than pre-jacking method and the correction factor of method of installation depend on the type of method of installation and the piles number. The increase in carrying capacity by hammering method is due to mobilize the dynamic soil structure interaction (soil-pile and pile-pile interaction) and the change in properties for surrounding soil for loose state of sand is more effective than static soil structure interaction mobilize by pre-jacking method. The correction factor of increase in load capacity and the correction factor of the percentage of settlement reduction for pre-jacking and hammering methods are compared with in-flight method of installation are changed with the number of piles and these values are increased with increasing the number of piles.
Distribution of light intensity in the flat photobioreactor for microalgae cultivation as a step design for production of bio-renewable energy was addressed in the current study. Five sizes of bioreactors with specific distances from the main light source were adopted as independent variables in experiential design model. The results showed that the bioreactor’s location according to the light source, determines the nature of light intensity distribution in the reactor body. However, the cross-section area plays an important role in determining the suitable location of reactor to achieve required light homogeneity. This area could change even the expected response of the light passing through the reactor if Beer-Lambert's law is adopted.
... Show MoreCervical carcinoma represent the second predominant cancer in female and there is a strong correlation between cervical cancer and the infection with high-risk types of HPV and expression the viral oncogenes. EMT is viewed as a vital advance in carcinoma development and ensuing metastasis. To evaluate correlation between the expression of Twist and HPV16 infection in a group of Iraqi patients with cervical carcinoma. A total of forty paraffin blocks included in this study which were divided into 30 sample of cervical cancer infected with HPV16and 10 sample of normal cervical tissues. The samples were subjected to immunohistochemical technique using Anti-Twist2 polyclonal antibody. The obtained data from this study indicate that majority of
... Show MoreSoil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soi
... Show MoreThis paper presents an experimental study between uniform pile and different types of under-reamed pile, single bulb. The under-reamed piles are piles with enlarged bases that are suitable to resist considerable movement of the ground, filed up ground, soft clay, and loose sand which have advantages to increase the soil strength, uplift capacity, and decrease the displacement. In the present study, there are experimental analyze to performance the suitable under-reamed type under sinusoidal load from vertical vibration (motor-oscillator was mounted directly on the pile cap. The main finding of this work is that the pile capacity increases with the ream and that all stress values of so
Under-reamed piles are piles with enlarged bases, which may be single bulb or multi bulbs. Such piles are suitable for resisting considerable soil movement of filed up ground, soft clay, and loose sand and have the advantages of increasing the soil strength and decreasing the displacement. In the present study, the finite element method was used to analyse the performance of a single pile with under-reamed bulbs of different shapes, that is, single cone, double cone, and half and full sphere, embedded in homogeneous, poorly graded sandy soil. The model of under-reamed pile was made of reinforced concrete and the bulb located at the middle of the embedded length of the pile. The dynami
Physical model tests were simulated non-aqueous phase liquid (NAPL) spill in two-dimensional
domain above the water table. Four laboratory experiments were carried out in the sand-filled
tank. The evolution of the plume was observed through the transparent side of this tank and the
contaminant front was traced at appropriate intervals. The materials used in these experiments
were Al-Najaf sand as a porous medium and kerosene as contaminant.
The results of the experiments showed that after kerosene spreading comes to a halt (ceased) in
the homogeneous sand, the bulk of this contaminant is contained within a pancake-shaped lens
situated on top of the capillary fringe.
Assume that G is a finite group and X = tG where t is non-identity element with t3 = 1. The simple graph with node set being X such that a, b ∈ X, are adjacent if ab-1 is an involution element, is called the A4-graph, and designated by A4(G, X). In this article, the construction of A4(G, X) is analyzed for G is the twisted group of Lie type 3D4(3).
The permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.