Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and identifying variants. A patient's HIV strain can be classified as susceptible or resistant to 17 different treatments. The FGD-MCNN transforms DNA genotype and HIV data into mathematical metrics, providing valuable insights into treatment-resistant HIV strains through pooling analysis. With remarkable accuracy, the FGD-MCNN deep learning system predicts HIV medication resistance using behavioral and genome-wide data from the HIV database. DNA patterns can be classified as resistant or susceptible by 17 antiretroviral drugs, providing valuable information for treatment planning and medical judgment. The model's parameter values illustrate the connections between neurons and the complex webs observed in the data have been examined. This study improves treatment effectiveness and expands the knowledge of HIV/AIDS.
Structural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.
ABSTRACT
The multi-drug resistant efflux pump is a glycoprotein pump whose function is to push foreign substances. The efflux pump is found in humans, animals. It also has wide-ranging properties in bacteria and fungi. They are found in all species of bacteria, and efflux pump genes can be found in bacterial chromosomes or mobile genetic elements, such as plasmids. The most sensitive function that leads to a global problem is its resistance to antibiotics in bacterial cells, which increases the ability to bacteria from becoming strong virulence factors that most or all antibiotics cannot kill. It also has othe
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreChronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy.
Epigenome-wide analysis of DNA methylation was performed for 20 patients at two timepoints during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 1
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreBack ground: AIDS is considered a dreaded disease.
According to recent estimates, 42 million people suffer
from HIV/AIDS (90% of these being in the developing
countries), with 5 million people newly infected with HIV
and 3.1 million deaths in the year 2002 globally. At
present, there is no effective vaccine to prevent the
disease. Hence, Health education (Information, Education
and Communication) activities bringing about behavioral
changes in the community, promoting healthy sexual
behavior and preventing the risky ones is the best possible
solution to the problem of AIDS.
Objectives: To find out the knowledge, beliefs and
attitudes regarding various aspects of HIV/AIDS amongst
intermediate and sec
Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.