Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving energy of up to 92% at 4,500 rounds.
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
Abstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, t
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe study aims to achieve several objectives, including follow-up scientific developments and transformations in the modern concepts of the Holistic Manufacturing System for the purpose of identifying the methods of switching to the entrances of artificial intelligence, and clarifying the mechanism of operation of the genetic algorithm under the Holonic Manufacturing System, to benefit from the advantages of systems and to achieve the maximum savings in time and cost of machines Using the Holistic Manufacturing System method and the Genetic algorithm, which allows for optimal maintenance time and minimizing the total cost, which in turn enables the workers of these machines to control the vacations in th
... Show More