Preferred Language
Articles
/
LhddD44BVTCNdQwCeTGs
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 10 and 20 Hz. Different steel fiber ratios of 0%, 0.5%, 0.75%, 1.0%, 1.5%, and 1.75% were provided in the concrete mixes to explore the effect of steel fibers on the dynamic behavior of these beams. Except for the steel fiber volume fraction, all of the examined specimens shared the same material attributes and reinforcing details. The outcomes proved the positive effect of adding steel fibers on the dynamic response under the effect of harmonic loading. The optimum volume fraction of steel fibers was characterized by a percentage of 1.5%. Moreover, the vibration amplitude was more affected by the steel fibers than the support reactions. The inertial force increased as the harmonic loading duration increased. This increase in the inertial force by the load duration was enhanced after adding the steel fibers. However, this enhancement started to decline after increasing the steel fiber content to 1.75%.

Scopus Clarivate Crossref
Publication Date
Tue Sep 02 2025
Journal Name
Journal Of Composites Science
Numerical Evaluation of Embedded I-Section Strengthening in Axially Loaded Composite Concrete-Filled Stainless Steel Tubes
...Show More Authors

To enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehen

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Constructing a Sustainable Roller Compacted Concrete Using Waste Demolished Material as Replacement of Cement: A Review
...Show More Authors

Roller Compacted Concrete is a type of concrete that is environmentally friendly and more economical than traditional concrete. Roller Compacted Concrete is typically used for heavy-duty and specialist constructions, such as hydraulic structures and pavements, because of its coarse surface. The main difference between RCC and conventional concrete mixtures is that RCC has a more significant proportion of fine aggregates that allow compaction and tight packing. In recent years, it has been estimated that several million tons of waste demolished material (WDM) produced each year are directed to landfills worldwide without being recycled for disposal. This review aimed to study the literature about creating a Roller-Comp

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Mar 03 2021
Journal Name
Innovative Infrastructure Solutions
Experimental investigation of a new sustainable approach for recycling waste styrofoam food containers in lightweight concrete
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Apr 19 2021
Journal Name
Bridge Maintenance, Safety, Management, Life-cycle Sustainability And Innovations
Flexure strengthening of concrete bridge girders with concavely curved soffit using near-surface-mounted CFRP bars
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 09 2020
Journal Name
Civil Engineering Journal
Torsional Strengthening of Reinforced Concrete Beams with Externally-Bonded Fibre Reinforced Polymer: An Energy Absorption Evaluation
...Show More Authors

The impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di

... Show More
View Publication
Scopus (16)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Case Studies In Construction Materials
Push-out test of waste sawdust-based steel-concrete – Steel composite sections: Experimental and environmental study
...Show More Authors

View Publication
Scopus (19)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Bridge Engineering
Torsional Analysis of Multicell Concrete Box Girders Strengthened with CFRP Using a Modified Softened Truss Model
...Show More Authors

Scopus (35)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Residual strength and strengthening capacity of reinforced concrete columns subjected to fire exposure by numerical analysis
...Show More Authors
Abstract<p>This study is a numerical investigation of the performance of reinforced concrete (RC) columns after fire exposure. This study aims to investigate the effect of introducing lateral ties and using the RC jacket on improving post-fire behavior of these columns, the effect of the duration of the fire on ultimate load of columns. The analysis was performed through ABAQUS, a 3D – non-linear finite element program. 4 m tall lengthening square RC column with a cross- section of 0.4 m × 0.4 m was used as a test specimen. The RC column was reinforced by 4Ø28 mm longitudinal bars bonded by steel tie bars of Ø10 mm spaced at 400 mm. The firing temperature was increased to 60</p> ... Show More
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Infrastructures
Enhancing Moisture Damage Resistance in Asphalt Concrete: The Role of Mix Variables, Hydrated Lime and Nanomaterials
...Show More Authors

Moisture-induced damage is a serious problem that severely impairs asphaltic pavement and affects road serviceability. This study examined numerous variables in asphalt concrete mixtures to assess their impact on moisture damage resistance. Mix design parameters such as the asphalt content (AC) and aggregate passing sieve No. 4 (PNo. 4) were considered as variables during this study. Additionally, hydrated lime (HL) was utilized as a partial substitute for limestone dust (LS) filler at 1.5% by weight of the aggregate in asphalt concrete mixtures for the surface layer. This study also investigated the potential enhancement of traditional asphalt binders and mixtures by adding nano-additives, specifically nano-silica oxide (NS) and na

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2017
Journal Name
Journal Of Bridge Engineering
Novel Demountable Shear Connector for Accelerated Disassembly, Repair, or Replacement of Precast Steel-Concrete Composite Bridges
...Show More Authors

A novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (

... Show More
View Publication Preview PDF
Scopus (95)
Crossref (82)
Scopus Clarivate Crossref