Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA2016) code. The concept of giving weight to each criterion was adopted to classify the criteria according to their importance and then conduct an on-site examination of these existing buildings to test the selected criteria. The result indicates a possible fire risk in these buildings due to the lack of compliance with fire safety instructions in the approved codes.
In this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe extracting of personal sprite from the whole image faced many problems in separating the sprite edge from the unneeded parts, some image software try to automate this process, but usually they couldn't find the edge or have false result. In this paper, the authors have made an enhancement on the use of Canny edge detection to locate the sprite from the whole image by adding some enhancement steps by using MATLAB. Moreover, remove all the non-relevant information from the image by selecting only the sprite and place it in a transparent background. The results of comparing the Canny edge detection with the proposed method shows improvement in the edge detection.
Existing leachate models over–or underestimates leachate generation by up to three orders of magnitude. Practical experiments show that channeled flow in waste leads to rapid discharge of large leachate volumes and heterogeneous moisture distribution. In order to more accurately predict leachate generation, leachate models must be improved. To predict moisture movement through waste, the two–domain PREFLO, are tested. Experimental waste and leachate flow values are compared with model predictions. When calibrated with experimental parameters, the PREFLO provides estimates of breakthrough time. In the short term, field capacity has to be reduced to 0.12 and effective storage and hydraulic conductivity of the waste must be increased to
... Show MoreIn the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H
... Show MoreTotal dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
Abstract:
The main objective of the research is to build an optimal investment portfolio of stocks’ listed at the Iraqi Stock Exchange after employing the multi-objective genetic algorithm within the period of time between 1/1/2006 and 1/6/2018 in the light of closing prices (43) companies after the completion of their data and met the conditions of the inspection, as the literature review has supported the diagnosis of the knowledge gap and the identification of deficiencies in the level of experimentation was the current direction of research was to reflect the aspects of the unseen and untreated by other researchers in particular, the missing data and non-reversed pieces the reality of trading at the level of compani
... Show More