Aim: This study aimed to assessing orthodontic knowledge and attitude among general dentists and non-orthodontic specialists. Background: Early detection of orthodontic disorders is essentialin motivating patients to intervene prior to long term complications when the disorders are not recongised. Methods: A questionnaire was distributed amongst dentistsother than orthodontists. This questionnaire consisted of three sections. The first one aimed to collect demographic, educational level and practice type information. Further two sections consisted of closed-end questions designed to evaluateknowledge and attitude of orthodontics. Results: A total of 313 responses to the survey were submitted. No significant correlation was observed, except for the specialty and qualification towards orthodontics knowledge. In terms of gender demographics, females had significantly higher attitude toward orthodontics compared to males. Conclusion: The results emphasise the vital role of continuing education programs and updating the curricula of dental colleges in the promotion of knowledge and attitude toward orthodontics among dentists. Clinical Significance: Knowledge and attitude of general practitioners and non-orthodontic specialists toward orthodontic issues is crucial in diagnosis and referral to receive proper treatment at early stages.
To assess the impact of COVID‐19 on oral hygiene (OH) awareness, attitude towards dental treatment, fear of infection and economic impact in the Middle East.
This survey was performed by online distribution of questionnaires in three countries in the Middle East (Jordan, Iraq and Egypt). The questionnaire consisted of five sections: the first section was aimed at collecting demographic data and the rest sections used to assess OH awareness, attitude towards dental treatment, degree of fear and economic impact of COVID‐19. The answers were either multiple choice, closed‐end (Yes or N
Background: Malignant lymphoma is a term that describes primary tumors of the lymphoreticular system, almost all of which arise from lymphocytes.MMP-1 is the most ubiquitously expressed interstitial collagenase, a subfamily of MMPs that cleaves stromal collagens. It is also called collagenase-1.TIMPs which inhibits MMP activity and thereby restrict extracellular matrix breakdown, TIMP-1 is a stromal factor that has a wide spectrum of functions in different tissues. Material and Methods: This study was performed on (68) formalin-fixed, paraffin-embedded blocks, histopathologically diagnosed as lymphoma (head and neck lesions). Immunohistochemical staining of MMP1and TIMP1 was performed on each case of the study sample. Results: The expressio
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreBinary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreThe current research aims to :
•know the level of social intelligence of the sample as a whole .
. •taraf statistically significant differences in social intelligence between disadvantaged and
non-disadvantaged peers .
To achieve these objectives, the selected sample of Talbhalmrahlh medium and specifically
students of the second grade average, were chosen randomly stratified's (360) students
included sex (male, female) and (deprived of the Father and the non-deprived) for the
academic year (2013-2014) for the province of Baghdad on both sides (Rusafa-Karkh (
As applied to them measurements of social intelligence, which is prepared by the researcher,
having achieved _khasaúsma of psychometric (valid and re