Preferred Language
Articles
/
LYYytoYBIXToZYALHbM4
Effect of External Sulfate Attack on Self Compacted Concrete
...Show More Authors

Self-compacting concrete (SCC) is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The effect of external sulfate attack was studied-Es (very sever exposure SO4>10000ppm) according to ACI 318-11. The mix design method of SCC used is according to EFNARC 2002, and then must satisfy the criteria of filling ability, passing ability and segregation resistance. The experimental program focuses to study two different chemical composition of sulfate resistance Portland cement with different percentage of silica fume replacement by weight of cement and W/cm (0.3 and 0.35). The SCC mixes with cement type 1(C3S= 46.39 and C3S/C2S = 1.78) shows more resistance to Es than mixes with cement type 2 (C3S= 61.22 and C3S/C2S =4.44). The SCC mixes containing 10% SF as replacement of cement shows more resistance to external sulfate attack. The percentage of increase is 17.95% for SCC mixes with type 1 cement and W/cm =0.3 and 17.88% for SCC mixes with type 2 cement and W/cm =0.3 compared to reference concrete mixes

Preview PDF
Quick Preview PDF
Publication Date
Fri Aug 07 2020
Journal Name
Key Engineering Materials
Compressive Strength and Shrinkage Behavior of Concrete Produced from Portland Limestone Cement with Water Absorption Polymer Balls
...Show More Authors

From the sustainability point of view a combination of using water absorption polymer balls in concrete mix produce from Portland limestone cement (IL) is worth to be perceived. Compressive strength and drying shrinkage behavior for the mixes of concrete prepared by Ordinary Portland Cement (O.P.C) and Portland limestone cement (IL) were investigated in this research. Water absorbent polymer balls (WAPB) are innovative module in producing building materials due to the internal curing which eliminates autogenous shrinkage, enhances the strength at early age, improve the durability, give higher compressive strength at early age, and reduce the effect of insufficient external curing. Polymer balls (WAPB) had been used in the mixes of thi

... Show More
Publication Date
Fri Feb 03 2023
Journal Name
Buildings
Flexural Performance of a Novel Steel Cold-Formed Beam–PSSDB Slab Composite System Filled with Concrete Material
...Show More Authors

In this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c

... Show More
View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Civil Engineering Journal
Behavior of Post-Tensioned Concrete Girders Subject to Partially Strand Damage and Strengthened by NSM-CFRP Composites
...Show More Authors

Studies on the flexural behavior of post-tensioned beams subjected to strand damage and strengthened with near-surface mounted (NSM) technique using carbon fiber-reinforced polymer (CFRP) are limited and fail to examine the effect of CFRP laminates on strand strain and strengthening efficiency systematically. Furthermore, a design approach for UPC structures in existing design guidelines for FRP strengthening techniques is lacking. Hence, the behavior of post-tensioned beams strengthened with NSM-CFRP laminates after partial strand damage is investigated in this study. The testing program consists of seven post-tensioned beams strengthened by NSM-CFRP laminates with three partial strand damage ratios (14.3% symmetrical damage, 14.3%

... Show More
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Dynamic Response of Slender Reinforced Concrete Columns Strengthened by Using CFRP and Circularization Subjected to Seismic Excitation
...Show More Authors

View Publication
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of The Mechanical Behavior Of Materials
Transient response and performance of prestressed concrete deep T-beams with large web openings under impact loading
...Show More Authors
Abstract<p>This study reports testing results of the transient response of T-shape concrete deep beams with large openings due to impact loading. Seven concrete deep beams with openings including two ordinary reinforced, four partially prestressed, and one solid ordinary reinforced as a reference beam were fabricated and tested. The effects of prestressing strand position and the intensity of the impact force were investigated. Two values for the opening’s depth relative to the beam cross-section dimensions were inspected under the effect of an impacting mass repeatedly dropped from different heights. The study revealed that the beam’s transient deflection was increased by about 50% with gre</p> ... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Materials In Civil Engineering
Moisture Susceptibility and Fatigue Performance of Hydrated Lime–Modified Asphalt Concrete: Experiment and Design Application Case Study
...Show More Authors

Hydrated lime has been recognized as an effective additive used to improve asphalt concrete properties in pavement applications. However, further work is still needed to quantify the effect of hydrated lime on asphaltic concrete performance under varied weather, temperature, and environmental conditions and in the application of different pavement courses. A research project was conducted using hydrated lime to modify the asphalt concretes used for the applications of wearing (surface), leveling (binder), and base courses. A previous publication reported the experimental study on the resistance to Marshall stability and the volumetric properties, the resilient modulus, and permanent deformation at three different weather temperatures. This

... Show More
View Publication
Crossref (13)
Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Applied Sciences
The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
...Show More Authors

Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti

... Show More
Scopus (31)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Tue Aug 03 2021
Journal Name
Key Engineering Materials
Study the Behavior of Castellated Steel Column Encasing by Different Reactive Powder Concrete Thickness with Laced Reinforcement
...Show More Authors

Castellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve com

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Mar 18 2019
Journal Name
Civil Engineering Journal
Circularization Technique for Strengthening of Plain Concrete Short Square Columns Subjected to a Uniaxial Compression Compressive Pressure
...Show More Authors

This paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular colu

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Oct 15 2024
Journal Name
Civileng
Structural Performance of a Hollow-Core Square Concrete Column Longitudinally Reinforced with GFRP Bars under Concentric Load
...Show More Authors

Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref