Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (MobileNet) was trained to identify key features of various satellite images that contained fire or without fire. Then, the trained system is used to classify new satellite imagery and sort them into fire or no fire classes. A cloud-based development studio from Edge Impulse Inc. is used to create a NN model based on the transferred learning algorithm. The effects of four hyperparameters are assessed: input image resolution, depth multiplier, number of neurons in the dense layer, and dropout rate. The computational cost is evaluated based on the simulation of deploying the neural network model on an Arduino Nano 33 BLE device, including Flash usage, peak random access memory (RAM) usage, and network inference time. Results supported that the dropout rate only affects network prediction performance; however, the number of neurons in the dense layer had limited effects on performance and computational cost. Additionally, hyperparameters such as image size and network depth significantly impact the network model performance and the computational cost. According to the developed benchmark network analysis, the network model MobileNetV2, with 160 × 160 pixels image size and 50% depth reduction, shows a good classification accuracy and is about 70% computationally lighter than a full-depth network. Therefore, the proposed methodology can effectively design an ML application that instantly and efficiently analyses imagery from a spacecraft/weather balloon for the detection of wildfires without the need of an earth control centre.
Sewer network is one of the important utilities in modern cities which discharge the sewage from all facilities. The increase of population numbers consequently leads to the increase in water consumption; hence waste water generation. Sewer networks work is very expensive and need to be designed accurately. Thus construction effective sewer network system with minimum cost is very necessary to handle waste water generation.
In this study trunk mains networks design was applied which connect the pump stations together by underground pipes for too long distances. They usually have large diameters with varying depths which consequently need excavations and gathering from pump stations and transport the sewage
... Show MoreThis study focuses on the implementation of interfaces for human machine interaction (HMI) control and monitor automatic production line. The automatic production line can performance feeding, transportation, sorting functions. The objectives of this study are implemented two SCADA/HMI system using two different software. TIA portal software is used to build HMI, alarm, and trends in touch panel which is helped an operator to control and monitor the production line. LabVIEW software is used to build HMI and trends in the computer screen and is linked with Microsoft Excel (ME) to generate information table helped to monitor the performance of the pneumatic equipment. The production line can do performance feeding, transportation, sorting fun
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
The need for renewable energy sources is higher than ever due to rising global warming, climate change, and ozone depletion. For refrigeration and air conditioning applications, adsorption refrigeration systems are viable alternatives cooling techniques. This study is a topic and part of the M.Sc. thesis. A field solar-powered ice maker unit was created, studied, tested, and evaluated on the 13th and 30th of May, 2022. Activated carbon and methanol pair was used to set up a refrigeration system in Baghdad (Al Dora). Experimental tests were carried out outdoors to determine the coefficient of performance COP and specific cooling power SCP of the system. The results showed that the lowest temperature
... Show MorePeer-Reviewed Journal
Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in
... Show More
