Preferred Language
Articles
/
LUKHDZoBMeyNPGM3jrxk
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (MobileNet) was trained to identify key features of various satellite images that contained fire or without fire. Then, the trained system is used to classify new satellite imagery and sort them into fire or no fire classes. A cloud-based development studio from Edge Impulse Inc. is used to create a NN model based on the transferred learning algorithm. The effects of four hyperparameters are assessed: input image resolution, depth multiplier, number of neurons in the dense layer, and dropout rate. The computational cost is evaluated based on the simulation of deploying the neural network model on an Arduino Nano 33 BLE device, including Flash usage, peak random access memory (RAM) usage, and network inference time. Results supported that the dropout rate only affects network prediction performance; however, the number of neurons in the dense layer had limited effects on performance and computational cost. Additionally, hyperparameters such as image size and network depth significantly impact the network model performance and the computational cost. According to the developed benchmark network analysis, the network model MobileNetV2, with 160 × 160 pixels image size and 50% depth reduction, shows a good classification accuracy and is about 70% computationally lighter than a full-depth network. Therefore, the proposed methodology can effectively design an ML application that instantly and efficiently analyses imagery from a spacecraft/weather balloon for the detection of wildfires without the need of an earth control centre.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Mechanical Engineering
Improving the Performance of the Vehicle Suspension System Using Inerter
...Show More Authors

Preview PDF
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Bioremediation of Petroleum Hydrocarbons Contaminated Soil using Bio piles System
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The bet

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 30 2025
Journal Name
Iraqi Journal Of Science
New Weighted Synthetic Oversampling Method for Improving Credit Card Fraud Detection
...Show More Authors

The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on th

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
GIS as A Tool for Expansive Soil Detection at Sulaymaniyah City
...Show More Authors

Geotechnical engineering like any other engineering field has to develop and cope with new technologies. This article intends to investigate the spatial relationships between soil’s liquid limit (LL), plasticity index (PI) and Liquidity index (LI) for particular zones of Sulaymaniyah City. The main objective is to study the ability to produce digital soil maps for the study area and determine regions of high expansive soil. Inverse Distance Weighting (IDW) interpolation tool within the GIS (Geographic Information System) program was used to produce the maps. Data from 592 boreholes for LL and PI and 245 boreholes for LI were used for this study. Layers were allocated into three depth ranges (1 to 2, 2 to 4 and 4 to 6)

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Analytical Model for Detection the Tilt in Originally Oil Water Contacts
...Show More Authors

Many carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Hurst Exponent and Tsallis Entropy Markers for Epileptic Detection from Children
...Show More Authors

The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology &amp; Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Fri Nov 27 2020
Journal Name
Journal Of Physics: Conference Series
Investigation of the State Vectors and Prediction of the Orbital Elements for Spot-6 Satellite during 1300 periods with Perturbations
...Show More Authors
Abstract<p>Computer simulations were carried out to investigate the dependence of the main perturbation parameters (Sun and Moon attractions, solar radiation pressure, atmosphere drag, and geopotential of Earth) on the orbital behavior of satellite. In this simulation, the Cowell method for accelerations technique was adopted, the equation of motion with perturbation was solved by 4<sup>th</sup> order Runge-Kutta method with step (1/50000) of period to obtain the state vectors for position and velocity. The results of this simulation have been compared with data that available on TLEs (NORD data in two line elements). The results of state vectors for satellites (Cartosat-2B, Gsat-14 an</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
USING SENSITIVITY ANALYSIS IN DETERMINING THE OPTIMAL&EFFICIENT PRODUCTION PLANS IN GREENHOUSES IN ASSOCIATION OF AL-WATAN UNDER CONDITION OF RISK &UNCERTAINTY
...Show More Authors

 The objectives of this research are to determine and find out the reality of crops structure of greenhouses in association of Al-Watan  in order to stand on the optimal use of economic resources available for the purpose of reaching a crop structure optimization of the farm that achieves maximize profit and gross and net farm incomes , using the method of linear programming to choose the farm optimal plan with the highest net income , as well as identifying production plans farm efficient with (income - deviation) optimal (E-A) of the Association and derived, which takes into account the margin risk wich derived from each plan using the model( MOTAD), as a model of models of linear programming alternative programming m

... Show More
View Publication Preview PDF
Crossref