Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (MobileNet) was trained to identify key features of various satellite images that contained fire or without fire. Then, the trained system is used to classify new satellite imagery and sort them into fire or no fire classes. A cloud-based development studio from Edge Impulse Inc. is used to create a NN model based on the transferred learning algorithm. The effects of four hyperparameters are assessed: input image resolution, depth multiplier, number of neurons in the dense layer, and dropout rate. The computational cost is evaluated based on the simulation of deploying the neural network model on an Arduino Nano 33 BLE device, including Flash usage, peak random access memory (RAM) usage, and network inference time. Results supported that the dropout rate only affects network prediction performance; however, the number of neurons in the dense layer had limited effects on performance and computational cost. Additionally, hyperparameters such as image size and network depth significantly impact the network model performance and the computational cost. According to the developed benchmark network analysis, the network model MobileNetV2, with 160 × 160 pixels image size and 50% depth reduction, shows a good classification accuracy and is about 70% computationally lighter than a full-depth network. Therefore, the proposed methodology can effectively design an ML application that instantly and efficiently analyses imagery from a spacecraft/weather balloon for the detection of wildfires without the need of an earth control centre.
Among more than 200 different human papilloma viral genotypes, the association of low oncogenic risk-HPV genotypes have been recognized with a variety of oral, oropharyngeal, nasopharyngeal benign tumors as well as non-neoplastic polyposis and papillomas and adenoid hypertrophy. This prospective case- control study aims to determine the rate of DNA detection of HPV genotype 6/11 in nasopharyngeal adeno- tonsillar tissues from a group of patients subjected to adenoctomy for adenoid hypertrophy . A total number of nasopharyngeal adeno-tonsillar tissue specimens from pediatric patients with adenoid hypertrophy were enrolled; 40 nasopharyngeal adeno-tonsillar tissues from patients with adenoid hypertrophy, and 20 normal nasal tissue specimen
... Show MoreNH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreRespiratory tract infections in sheep are among the important health problems that affect all sheep ages around the world. Nine bacterial isolates obtained from sheep with respiratory tract infections were selected to be used in the current study. The isolates included 3 Staphylococcus aureus, 4 Klebsiella pneumoniae, and 2 Pseudomonas aeruginosa. Following the primers design by the Primer3Plus software tool and optimization of the conventional polymerase chain reaction (PCR), the primers were validated for their use in the multiplex PCR experiments. The MFEprimer program was used to check the suitability of the primer set combinations for multiplex PCR. The MFEprimer software was successful in designing the multiplex-PCR experiments and de
... Show More
The current research variables have received increasing attention in the recent period because they are one of the important issues affecting the future of organizations, as a result of the speed of environmental variables that have greatly affected organizations and for the purpose of explaining the relationships and links between research variables, as this research presents a test "the type and direction of the relationship between strategic foresight capabilities As an independent variable and green creativity "as a respondent variable. A set of questions has arisen about the basic research problem, including what is the nature and level of interest in the research variables (strategic foresight capabilities an
... Show MoreThe work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreIn this paper it is required to enhance the performance of a mechanical system (here: a Hoisting System) where it is preferred to lift a different payloads with approximately the same speed of lifting and keeping at the same time the good performance, and this of course needs some intelligence of the system which will be responsible on measuring the present load and taking into account the speed and performance desired in order to achieve the requirements or the criteria. The process therefore is a Mechatronics System design which includes a measuring system, a control or automation technique, and an actuating system. The criteria built here in this research using a given Hoist system's characteristics and parameters and changing one of
... Show MoreThe diagnoses system of varicose disease has a good level of performance due to the complexity and uniqueness in patterns of vein of the leg. In addition, the patterns of vein are internal of the body, and its features are hard to duplicate, this reason make this method not easy to fake, and thus make it contains of a good features for varicose disease diagnoses. The proposed system used more than one type of algorithms to produce diagnoses system of varicose disease with high accuracy, in addition, this multi-algorithm technique based on veins as a factor to recognize varicose infection. The obtained results indicate that the design of varicose diagnoses system by applying multi- algorithms (Naïve Bayes and Back-Propagation) produced new
... Show More