Reservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from well logs, and resistivity logs are available. The third method is the storage capacity of rocks. The focus is on the ability of rocks to store liquids, especially hydrocarbons. This method analyzes porosity, permeability, and pore size distribution data. After that, we compared the previous three methods to identify the types of rocks and determine the best method. In the first method (Cluster Analysis), three types of rocks were identified (Bad, Moderate, and Good). In the second method, electrical rock type (ERT), four types of rocks were identified (Bad, Moderate, Good, and Very good). Then, the third method (Storage Capacity) came and enhanced the results of the second method, so the second method is considered the best and most accurate method determining the types of rocks.
The Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process
This paper proposed a theoretical treatment to study underwater wireless optical communications (UWOC) system with different modulation schemes by multiple input-multiple output (MIMO) technology in coastal water. MIMO technology provides high-speed data rates with longer distance link. This technique employed to assess the system by BER, Q. factor and data rate under coastal water types. The reliability of the system is examined by the techniques of 1Tx/1Rx, 2Tx/2Rx, 3Tx/3Rx and 4Tx/4Rx. The results shows the proposed technique by MIMO can get the better performance compared with the other techniques in terms of BER. Theoretical results were obtained to compare between PIN and APD
Fractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreThe aim of this work is to design an algorithm which combines between steganography andcryptography that can hide a text in an image in a way that prevents, as much as possible, anysuspicion of the hidden textThe proposed system depends upon preparing the image data for the next step (DCT Quantization)through steganographic process and using two levels of security: the RSA algorithm and the digitalsignature, then storing the image in a JPEG format. In this case, the secret message will be looked asplaintext with digital signature while the cover is a coloured image. Then, the results of the algorithmare submitted to many criteria in order to be evaluated that prove the sufficiency of the algorithm andits activity. Thus, the proposed algorit
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show More