COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
I've made extensive studies on the distribution of the electric field stable heterogeneous within intensive that contain metal rings with slope diagonal positive to a site halfway to be in its maximum value, followed by decline negative and equally to the other end of the concentrated distributed by electric stable thanking sequentially and have focused empirical studies in the pastthe molecules that you focused Pantqaúha during passage
Background: COVID-19 is an ongoing disease that caused, and still causes, many challenges for humanity. In fact, COVID-19 death cases reached more than 4.5 million by the end of August 2021, although an improvement in the medical treatments and pharmaceutical protocols was obtained, and many vaccines were released. Objective: To, statistically, analyze the data of COVID-19 patients at Alshifaa Healthcare Center (Baghdad, Iraq). Methods: In this work, a statistical analysis was conducted on data included the total number, positive cases, and negative cases of people tested for COVID-19 at the Alshifaa Healthcare Center/Baghdad for the period 1 September – 31 December 2020. The number of people who got the test was 1080, where 424 w
... Show MoreCoronavirus disease 2019 (COVID-19) is a flu-like infection caused by a novel virus known as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). After the widespread around the world, it was announced by the World Health Organization (WHO) as a global pandemic. The symptoms of COVID-19 may arise within 2 weeks and the severity ranged from mild with signs of respiratory infection to severe cases of organ failure and even death. Management of COVID-19 patients includes supportive treatment and pharmacological medications expected to be effective with no definitive cure of the disease. The aims of this study are highlighting the management protocol and supportive therapy especially vitamin D and manifesting the clinical symptoms b
... Show MoreThe typical test for diagnosis of severe acute respiratory syndrome coronavirus 2 is a reverse transcription-polymerase chain reaction (RT-PCR) technique, but the chest CT scan might play a complementary role at the first detection of Coronavirus Disease 2019 (COVID-19) pneumonia. Objectives: To determine the sensitivity of CT scan on patients with COVID-19 in Al-Najaf, Iraq, and to compare the accuracy of CT scan with that of RT-PCR technique. Material and Method: This is a prospective study. The patients suspicious of having COVID-19 infection and respiratory symptoms were registered. All patients were diagnosed by RT-PCR and chest CT. Diagnostic performance of CT was intended using RT-PCR as the reference sta
... Show MoreABSTRACT Objective: Cardiovascular diseases are the first ranked cause of death worldwide. Adhering to health promoting lifestyle behaviors will maintain an individual’s cardiovascular health and decrease the risk of cardiovascular diseases. Methods: In this descriptive study, 150 nursing faculty were surveyed via a non-probability (purposive) sampling method to assess their adherence to health promoting lifestyle in order to know the risk of cardiovascular diseases. The Arabic version of Health-Promoting Lifestyle Profile II (HPLP-II) was used to achieve this goal. Results: Seventy-two nursing faculty completed the survey. The results indicated that the study sample had moderate level of health promotion based on Health-Promot
... Show More