COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
Background and Purpose: Coronavirus has posed an unfamiliar threat to the world. Despite such circumstances, Malaysians continue to stay optimistic by keeping abreast with updates and mostly by seeking refuge in hopeful and consoling messages shared by fellow citizens. This study identified Facebook postings with positive messages, posted by Malaysians during the Movement Control Order (MCO) implemented by the Malaysian government as a form of prosocial behaviour. Methodology: Through an analytic framework consisting of Positive Discourse Analysis and Critical Discourse Analysis, 15 Facebook postings related to COVID-19 were selected and identified as positive discourse, which were coded and categorised using a thematic analysi
... Show MoreMany studies dealt with the consequences of SARS CoV-2 (which cause COVID-19 infection) on the nervous system especially sensory nerves where the virus causes loss of taste and smell as it’s known, and may affect auditory nerves and be the expected cause of some hearing problems. A case-control analytic study was performed on a connivance sample of society of university students from a medical faculty. Each participant filled out a questionnaire contains demographic data and general, auditory and respiratory health condition, in addition to vaccination status. In the other side, the audio- examinations were performed on the study sample including Pure Tone Audiometry (PTA) and tympanometry. Two statistical methods; chi-square and t
... Show MoreBackground: coronavirus 19 is a beta-coronavirus, enveloped and roughly spherical with approximately 60 to 140 nm in diameter with positive-sense single-stranded RNA genome.
Objectives: Measurement of interleukin 6 (IL6) level in a group of patients with confirmed Covid19 infection and its correlation with many hematological and biochemical parameters , mainly lymphocyte , neutrophil count and their ratio , platelet count , serum ferritin , C reactive protein as well as D-dimer level
Subjects and Methods: This study was conducted on 60 PCR positive patients variably affected by COVID-19 , cases collected sequentially from June till November 20
... Show MoreBackground: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has
... Show MoreThe beginning of COVID-19 in Wuhan, China in late December 2019 and its worldwide transmission has led the World Health Organization to formally address the pandemic. The pandemic has imposed influential impacts on different environmental, economic, social, health, and living aspects. Publishing in scholastic journals was not immune from these impacts.
Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MoreVaccine hesitancy poses a significant risk to global recovery from COVID-19. To date however, there is little research exploring the psychological factors associated with vaccine acceptability and hesitancy in Iraq.
To explore attitudes towards COVID-19 vaccination in Iraq. To establish the predictors of vaccine uptake and vaccine hesitancy in an Iraqi population.
Using a cross-sectional design, 7,778 participants completed an online questionnaire exploring their vaccination status, likelihood of infection, perc
In the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H
... Show More