COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
The research aims to explain the role of the flexible budget in assessing the feedback resulting from deviations by comparing the actual results with the planned performance in light of the economic crisis that the world witnessed during the spread of Corona disease. As most companies, including the Electronic Industries Company, face the problem of controlling production costs and are trying hard to reduce these costs to the lowest level starting from measuring these costs and allocating them and distributing them to products. This helps in controlling deviations and thus the flexible budget becomes a tool that helps in controlling elements Costs
COVID-19 is a coronavirus disease caused by the severe acute respiratory syndrome. According to the World Health Organization (WHO), coronavirus-2 (SARS-CoV-2) was responsible for 87,747,940 recorded infections and 1,891,352 confirmed deaths as of January 9, 2021. Antibodies that target the Sprotein are efficient in neutralizing the virus. Methodology: 180 samples were collected from clinical sources (Blood and Nasopharyngeal swabs) and from different ages and genders at diverse hospitals in Baghdad / IRAQ between November 5, 2021, to January 20, 2022. All samples were confirmed infected with COVID-19 disease by RT-PCR technique. Haematology analysis and blood group were done for all samples, and Enzyme-Linked Immunosorbent Assay used an Ig
... Show MoreInfertility is one of the types of diseases that occur in the reproductive system. Obesity is a state that can be occurred due to excessive fats, the progression in obesity stage results in a change in adipose tissue and the development of chronic inflammation, endocrine glands disorders and women’s reproductive system, and also increase the infection with covid-19. The study aimed to investigate the effect of the obesity, lipid-profile, and IL-6 on hormones-dysregulation in infertile-women with COVID-19 complications. The current study included 70 samples: 50 infertility-women-with-covid-19-infected, 20 healthy-women/control, the ages of both patients and healthy subjects were selected within the range 18-34 years. Levels of FBS, LH,
... Show MoreLittle is known about hesitancy to receive the COVID‐19 vaccines. The objectives of this study were (1) to assess the perceptions of healthcare workers (HCWs) and the general population regarding the COVID‐19 vaccines, (2) to evaluate factors influencing the acceptance of vaccination using the health belief model (HBM), and (3) to qualitatively explore the suggested intervention strategies to promote the vaccination.
This was a cross‐sectional study based on electronic survey data that was collected in Iraq during December first‐19th, 2020. The electronic surve
As COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation
Background: COVID-19 has caused a considerable number of hospital admissions in China since December 2019. Many COVID-19 patients experience signs of acute respiratory distress syndrome, and some are even in danger of dying. Objective: to measure the serum levels of D-dimer, Neutrophil-Lymphocyte count ratio (NLR), and neopterin in patients hospitalized with severe COVID-19 in Baghdad, Iraq. And to determine the cut-off values (critical values) of these markers for the distinction between the severe patients diagnosed with COVID‐19 and the controls. Materials and methods: In this case-control study, we collect blood from 89 subjects, 45 were severe patients hospitalized in many Baghdad medical centers who were diagnosed with COVID
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show More