Preferred Language
Articles
/
LBeoso0BVTCNdQwC7BkW
Compensation for Psychological Damage Caused by Negligence - A Comparative Study
...Show More Authors

Psychological damage is one of the damages that can be compensated under the fault of negligence in the framework of English law, where the latter intends to include an enumeration of civil errors on the basis of which liability can be determined, and aims under each of these errors to protect a specific interest (for example, defamation protects Among the damage to reputation and inconvenience are the rights contained on the land), and the same is true for the rest of the other errors. Compensation for psychological damage resulting from negligence has raised problems in cases where the psychological injury is "pure", that is, those that are not accompanied by a physical injury, which required subjecting them to special requirements by the English judiciary to succeed in obtaining compensation for the aforementioned damage.

View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification
...Show More Authors

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
Using Backpropagation to Predict Drought Factor in Keetch-Byram Drought Index
...Show More Authors

Forest fires continue to rise during the dry season and they are difficult to stop. In this case, high temperatures in the dry season can cause an increase in drought index that could potentially burn the forest every time. Thus, the government should conduct surveillance throughout the dry season. Continuous surveillance without the focus on a particular time becomes ineffective and inefficient because of preventive measures carried out without the knowledge of potential fire risk. Based on the Keetch-Byram Drought Index (KBDI), formulation of Drought Factor is used just for calculating the drought today based on current weather conditions, and yesterday's drought index. However, to find out the factors of drought a day after, the data

... Show More
View Publication Preview PDF
Clarivate Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Effect of Secondary Metabolite Crude of Metarhizum anisopliea Fungus on the Second Larval Stage of the Housefly Musca domestica
...Show More Authors

         The house flies Musca domestica )Diptera:musidae) are the primary carrier of many pathogens such as cholera, typhoid, anthrax, and others. The use of chemical pesticides as a basic method of control leads to many problems at the environmental and health level. The use of safe alternatives to chemical pesticides has become an urgent necessity. The research aims to find biological alternatives that are environment-friendly and non-pathogenic to humans in controlling house flies through the possibility of extracting and diagnosing some secondary metabolites produced by the fungus Metarhizium anisopliae and testing their effects on the second larval stage of house flies using different treatment methods that include

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of The College Of Languages (jcl)
Analysis of the Inconsistent Structural-Semantic Aspects in the Plays of A.N. Ostrovsky: Несогласованные Определения В Пьесах А.Н. Островского: Структурно-Семантический Аспект
...Show More Authors

     The study aims at analyzing the inconsistent structural and semantic aspects found in the plays of N.A Ostrovsky. The analysis, that includes all the linguistics schools of thoughts in modern Russian language, is performed chronologically to clarify all the ambiguities that the Russian language learners may face. Such difficulties lie in the use of inconsistent aspects with complete declarative sentences and adverbial clauses. Hence, it constructs a new sentence category that consists of secondary clause and its syncretism semantic.

     The study illustrates the wide scope of both studying the sentence inconsistent

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Effect of nanocapsules and extract of Metarhizium anisopliae in inhibiting acetylcholine esterase enzyme in Musca domestica larvae.
...Show More Authors

M. domestica is the most important insect that transmit pathogens for diseases in the world. The use of nanotechnology is eco-friendly method in control pests. The study aims to investigate the feasibility of bio-manufacturing nanocapsules of fungal secondary metabolites in order to improve the efficiency of metabolite and assess their inhibitory effect on the acetylcholine esterase enzyme in housefly larvae. An equal mixture of organic solvents, ethyl acetate and dichloromethane, was used to extract the metabolic products of the fungus M. anisopliae, (PEG4000) and chitosan was used in the preparation of nanocapsules. The results of the DLS granular size assay showed that the size of the extract particles and the size of the chitosan and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition
...Show More Authors

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Advanced Intelligent Data Hiding Using Video Stego and Convolutional Neural Networks
...Show More Authors

Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file.  In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref