Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
The effect of compound machine on wheat "Tamuz cultivar" was studied based on some technical indicators which were tested under three practical speed (PS) of 2.015, 3.143, and 4.216 km.hr-1 and three tillage depth (TD) of 11, 13, and 15cm. The split-split plot arrangement in RCBD with three replications was used. The results showed that the PS of 2.015km.hr-1 was major best than other two speed in all studied conditions, physical properties (SBD and TSP), mechanical parameters (FD, (DP and LAS), and yield and growth parameters (PVI, BY and HI). The TD of 11cm was major effect to the other two levels TD of 13 and TD of 15cm in all studied conditions. All interactions were significant,
The effect of compound machine on wheat "Tamuz cultivar" was studied based on some technical indicators which were tested under three practical speed (PS) of 2.015, 3.143, and 4.216 km.hr-1 and three tillage depth (TD) of 11, 13, and 15cm. The split-split plot arrangement in RCBD with three replications was used. The results showed that the PS of 2.015km.hr-1 was major best than other two speed in all studied conditions, physical properties (SBD and TSP), mechanical parameters (FD, (DP and LAS), and yield and growth parameters (PVI, BY and HI). The TD of 11cm was major effect to the other two levels TD of 13 and TD of 15cm in all studied conditions. All interactions were significant,
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More