Ketoprofen has recently been proven to offer therapeutic potential in preventing cancers such as colorectal and lung tumors, as well as in treating neurological illnesses. The goal of this review is to show the methods that have been used for determining ketoprofen in pharmaceutical formulations. Precision product quality control is crucial to confirm the composition of the drugs in pharmaceutical use. Several analytical techniques, including chromatographic and spectroscopic methods, have been used for determining ketoprofen in different sample forms such as a tablet, capsule, ampoule, gel, and human plasma. The limit of detection of ketoprofen was 0.1 ng/ ml using liquid chromatography with tandem mass spectrometry, while it was 0.01-
... Show MoreMost of the water pollutants with dyes are leftovers from industries, including textiles, wool and others. There are many ways to remove dyes such as sorption, oxidation, coagulation, filtration, and biodegradation, Chlorination, ozonation, chemical precipitation, adsorption, electrochemical processes, membrane approaches, and biological treatment are among the most widely used technologies for removing colors from wastewater. Dyes are divided into two types: natural dyes and synthetic dyes.
Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent
Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show MoreGlaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma d
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
The objective of this work was to study the effect of oral administration of Cyperus esculentus (CE) and its alcoholic extract on sperm function parameters in prepubertal mice as a model for human .The animals were divided into three groups each contains 6 animals .Group 1 was treated with 150 mg/ kg body weight /day of crude CE, group 2 was treated with same dose of alcohol extract of CE and group 3 regarded as control throughout six weeks period. The results showed a significant (p> 0.05) increase in the mean of sperm concentration ,sperm motility percent and progressive sperm motility between treated groups and control . There was no differences among groups in the mean of sperm normal morphology and sperm viability . No significa
... Show MoreWith the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show More