Objective: To measure the serum levels of Fetuin-A, ischemia-modified albumin (IMA), and ferritin in hospitalized patients with severe COVID-19in Baghdad, Iraq. Moreover, to determine these biomarkers' cut-off valuesthat differentiate between severely ill patients and control subjects. Methods: This case-control study was done from 15 September to the end of December 2021 and involved a review of the files and collectionof blood samples from patients (n=45, group1) hospitalized in COVID-19 treatment centersbecause of severe symptoms compared tohealthy subjects as controls (n=44, group2). Results: Fetuin-A serum levels were not statistically different between patients and controls. In contrast, IMA and ferritin levels were significantly different between the 2 groups, with patients' levelsbeing greater than control participants' (p 0.05). The critical values for the Fetuin-A, IMA, and ferritin tests were 393.78 mg/L, 59.22 ng/ml, and 126 µg/L, respectively, with concentration curves of 0.58, 0.70, and 0.93 for each. Conclusions: Patients and controls showed no significant difference in Fetuin-A levels in the blood. However, IMA and ferritin levels werehigher in people suffering from acute COVID-19 infection than in controls, with Fetuin-A values less than 393.78 mg/L andIMA and ferritin valueshigher than 59.22 ng/mland 126,000 μg/L, respectively.
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure
Release of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreComposite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreObjective(s): The study aims at evaluating pregnancy-related health behaviors for pregnant women, and to identify the association between pregnancy-related health behaviors and their demographic characteristics of pregnant woman’s age, education, employment, residential area and monthly income.
Methodology: A descriptive study is carried out for the period from December 14th, 2020 to June 20th, 2021. This study was conducted through a non-probability (convenience) sample of 150 pregnant women attending, Abo Ghareeb primary health care sector in Abo Ghareeb spend. The sample has been collected by using the instrument to gather data and accomplish the study's objectives. A questionnaire is composed of (29) items and it is divided into
In this work silicon solar cell has been used with semicircular grooves to improve its efficiency by reducing reflection of rays and increasing optical path through the cell. Software program for optical design (zemax) has been used by ray tracing mode to evaluate prototype efficiency when using detector beneath the cell. The prototype has aspect ratio (A.R=0.2) which is the best efficiency at incident angle (ϴ=0ͦ) and the best acceptance angle (ϴ=50ͦ).
A thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increase
... Show MoreThis study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show More