The surgical treatment of inferior turbinate hypertrophy (ITH) is challenging. Submucosal diathermy (SMD) is a well-known surgical procedure used for the treatment of ITH, microdebrider-assisted rhinoplasty (MAT) is relatively a newer technique used in the management of ITH. To evaluate the effect of MAT on inferior turbinate size and nasal airway patency in patients with bilateral ITH in comparison to SMD. Seventy-one patients presented with nasal obstruction due to bilateral ITH were allocated into two groups, group a (35 patients) were subjected to SMD and 36 patients in group B were subjected to MAT. All the patients had been sent to CT scan pre-operatively and at the third postoperative month to measure the cross-sectional areas of the inferior turbinate, also the subjective assessment of nasal airway patency was done by visual analog scale (VAS) preoperatively and at the end of 3ed post-operative month. The mean cross-sectional area of IT decreased from 163 mm2 pre- operatively to 149.67 mm2 at the 3ed post-operative month in group A (P-value =0.02), and from 163.67 mm2 to 131mm2 in group B (P value= 0.004). Intergroup comparison had shown that there was a significant difference between MAT and SMD in decreasing the size of IT and relieving nasal obstruction at the 3ed postoperative month (p-value = 0.026 and 0.021 respectively). In conclusion, both MAT and SMD are effectively decreasing the size of the inferior turbinate and relieving nasal obstruction but with superior results in MAT.
Despite the multiple sources of polycyclic compounds in the agricultural environment, this study suggests that it is possible to adopt the events of plants and their associated microorganisms in the soil, such as mushrooms and bacteria in the decomposition of these compounds can also use harvested plants such as barley and alfalfa grown for animal feed
has experienced a step-change since the inception of ambient mass spectrometry removed the requirement for samples to be investigated under vacuum conditions. Approaches based on surface– plasma interactions are especially promising, including PADI. Whilst the mechanisms involved in generating PADI spectra still need to be unravelled, PADI shows significant promise to become a valuable and versatile tool in the instrumental arsenal available to the surface analyst
The consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced
... Show MoreSimultaneous determination of Furosemide, Carbamazepine, Diazepam, and Carvedilol in bulk and pharmaceutical formulation using the partial least squares regression (PLS-1 and PLS-2) is described in this study. The two methods were successfully applied to estimate the four drugs in their quaternary mixture using UV spectral data of 84synthetic mixtures in the range of 200-350nm with the intervals Δλ=0.5nm. The linear concentration range were 1-20 μg.mL-1 for all, with correlation coefficient (R2) and root mean squares error for the calibration (RMSE) for FURO, CARB, DIAZ, and CARV were 0.9996, 0.9998, 0.9997, 0.9997, and 0.1128, 0.1292, 0.1868,0.1562 respectively for PLS-1, and for PLS-2 were 0.9995, 0.9999, 0.9997, 0.9998, and 0.1127, 0.
... Show More
CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.
5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM an
... Show More