Preferred Language
Articles
/
KxbPtIcBVTCNdQwCEF2E
The Effect of Quantum Confinement on Optical Properties of CdSe Quantum Dots at Room Temperature

CdSe quantum dots possess a tuning energy gap which can control gap values according to the size of the quantum dots, this is made the material able to absorb the wavelengths within visible light. A simple model is provided for the absorption coefficient, optical properties, and optical constants for CdSe quantum dots from the size 10nm to 1nm with the range of visible region between (300-730) nm at room temperature. It turns out that there is an absorption threshold for each wavelength, CdSe quantum dots begin to absorb the visible spectrum of 1.4 nm at room temperature for a wavelength of 300 nm. It has been noted that; when the wavelength is increased, the absorption threshold also increases. This applies to the optical properties and optical constants, where their values start to change from the threshold at 1.4 nm. The obtained results indicate that the range of the absorption coefficient can cover the ultraviolet, visible and to the infrared region when the quantum sizes are relatively large ( the size  9 nm), while the small sizes give small ranges of it, as only the ultraviolet region (the size = 1.4 nm) or part of the visible region ( the size > 1.4 nm ). What resulted from this difference in the results of the absorption coefficient, had a significant impact on the optical properties. Although the material has high transmittance ( reach more 75%), it is considered to have low absorbance ( less than 0.01%), at the same time the reflectivity had been valued between ( 14% to 22%) according to of size dot. The optical conductivity is proportional to quantum dot size, where an increase of it depends on the increasing of quantum dot size. It was also found that the real part of the dielectric constant is much greater than the imaginary part values, this is an indication that; the numbers of polarized charges towards the electric field were much greater than the polarized charges opposite to the direction of the field. It is worth noting that the behaviour of the refractive index is similar to the real part, while the extinction index resembles that of the imaginary part.

Crossref
View Publication
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Study the Effect of solvent on the Optical Properties Performance of active polymeric laser media

The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
International Journal Of Research And Reviews In Computer Science
Detection of the photon number splitting attack by using decoy states quantum key distribution system

The goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.

Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Generation of True Random TTL Signals for Quantum Key-Distribution Systems Based on True Random Binary Sequences

A true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems

View Publication Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Journal Of Electronic Materials
Thiophosgene Detection by Ag-Decorated AlN Nanotube: A Mechanical Quantum Survey

The density functional B3LYP is used to investigate the effect of decorating the silver (Ag) atom on the sensing capability of an AlN nanotube (AlN-NT) in detecting thiophosgene (TP). There is a weak interaction between the pristine AlN-NT and TP with the sensing response (SR) of approximately 9.4. Decoration of the Ag atom into the structure of AlN-NT causes the adsorption energy of TP to decrease from − 6.2 to − 22.5 kcal/mol. Also, the corresponding SR increases significantly to 100.5. Moreover, the recovery time when TP is desorbed from the surface of the Ag-decorated AlN-NT (Ag@AlN-NT) is short, i.e., 24.9 s. The results show that Ag@AlN-NT can selectively detect TP among other gases, such as N2, O2, CO2, CO, and H2O.

Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Feb 27 2019
Journal Name
Journal Of Nano Research
A Specific NH<sub>3</sub> Gas Sensor of a Thick MWCNTs-OH Network for Detection at Room Temperature

NH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi

... Show More
Scopus (16)
Crossref (14)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quantum Mechanical Study Using the DFT Method of the Structure, Stability and Vibrationalmosion of the Ketones of Cyclopropane

  In this study a DFT calculation on cyclopropanone, cyclopropandione and cyclopropantrione molecules was performed using the basis function 6-31G ** / MP2 and exchange correlation potential B3-LYP. The results showed that the ground state of all molecules geometry belong to the point group 𝐶2𝑣where a vibronic coupling between the vibrational motion with the electronic ground state in the molecule C3O3 this leads to a reduction in symmetry of the molecule from𝐷3â„Žto 𝐶2𝑣, the driving force of this process is accessing to the electronic configuration complies with Hückel aromatic systems with two electrons. Also in this, study the normal modes of vibration, frequencies, intensities and symm

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 22 2023
Journal Name
Journal Of Optics
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Temperature and Nickel Concentration on the Electrical and Dielectric Properties of Polyethylene-Nickel Composites

The effect of temperature range from 298 K to 348 K and volume filler content ф on electrical properties of polyethylene PE filled with nickel Ni powders has been investigated. The volume electrical resistivity V  of such composites decreases suddenly by several orders of magnitude at a critical volume concentration (i.e. фc=14.27 Vol.%) ,whereas the dielectric constant   and the A.C electrical conductivity AC  of such composites increase suddenly at a critical volume concentration (i.e. фc=14.27 Vol.%).For volume filler content lower than percolation threshold ф<фc the resistivity decreases with increasing temperature, whereas the dielectric constant and the A.C electrical conductivity of

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 04 2018
Journal Name
Baghdad Science Journal
Effects of Non-Thermal Argon Plasma Produced at Atmospheric Pressure on the Optical Properties of CdO Thin Films

In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma

Scopus (17)
Crossref (9)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Effect of SnO2/In2O3 Atomic Ratio on the Structural and Optical Properties of ITO Thin Filmsof SnO2:In2O3 Thin Film Composite Ratio on Structural and Optical Properties

In this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied.  Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.

Scopus Clarivate Crossref
View Publication Preview PDF