Preferred Language
Articles
/
KhbhQIcBVTCNdQwCHz5Y
Fused and Modified Evolutionary Optimization of Multiple Intelligent Systems Using ANN, SVM approaches
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Aug 29 2024
Journal Name
Materials
Experimental Study to Investigate the Performance-Related Properties of Modified Asphalt Concrete Using Nanomaterials Al2O3, SiO2, and TiO2
...Show More Authors

The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im

... Show More
Scopus (8)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Jun 09 2020
Journal Name
Article In Journal Of Engineering Science And Technology
English Numbers Recognition Based on Sign Language Using Line-Slope Features and PSO-DBN Optimization Method
...Show More Authors

View Publication
Scopus (3)
Scopus
Publication Date
Sat Oct 29 2022
Journal Name
Computers
Intelligent Robotic Welding Based on a Computer Vision Technology Approach
...Show More Authors

Robots have become an essential part of modern industries in welding departments to increase the accuracy and rate of production. The intelligent detection of welding line edges to start the weld in a proper position is very important. This work introduces a new approach using image processing to detect welding lines by tracking the edges of plates according to the required speed by three degrees of a freedom robotic arm. The two different algorithms achieved in the developed approach are the edge detection and top-hat transformation. An adaptive neuro-fuzzy inference system ANFIS was used to choose the best forward and inverse kinematics of the robot. MIG welding at the end-effector was applied as a tool in this system, and the wel

... Show More
View Publication
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering
Smart element aware gate controller for intelligent wheeled robot navigation
...Show More Authors

<p>The directing of a wheeled robot in an unknown moving environment with physical barriers is a difficult proposition. In particular, having an optimal or near-optimal path that avoids obstacles is a major challenge. In this paper, a modified neuro-controller mechanism is proposed for controlling the movement of an indoor mobile robot. The proposed mechanism is based on the design of a modified Elman neural network (MENN) with an effective element aware gate (MEEG) as the neuro-controller. This controller is updated to overcome the rigid and dynamic barriers in the indoor area. The proposed controller is implemented with a mobile robot known as Khepera IV in a practical manner. The practical results demonstrate that the propo

... Show More
Scopus (3)
Scopus Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Network Self-Fault Management Based on Multi-Intelligent Agents and Windows Management Instrumentation (WMI)
...Show More Authors

This paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 01 2009
Journal Name
Ibn Al- Haitham J. Fo R Pure & Appl. Sci
Multiple Mixing Ratios of Gamma Rays Erγ)nEr(n, From 168 168 Reaction  Using a2 – Ratio Method
...Show More Authors

The -mixing of  - transition in Er 168 populated in Er)n,n(Er 168168  reaction is calculated in the present work by using a2- ratio method. This method has used in previou studies [4, 5, 6, 7] in case that the second transition is pure or for that transition which can be considered as pure only, but in one work we applied this method for two cases, in the first one for pure transition and in the 2nd one for non pure transitions. We take into accunt the experimental a2- coefficient for p revious works and -values for one transition only [1]. The results obtained are, in general, in agood agreement within associated errors, with those reported previously [1], the discrepancies that occur are due to inaccuracies existing

... Show More
Publication Date
Thu Feb 01 2024
Journal Name
Structures
Accelerating reliability analysis of deteriorated simply supported concrete beam with a newly developed approach: MCS, FORM and ANN
...Show More Authors

Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Geological Journal
Multiple and Coherent Noise Removal from X-Profile 2D Seismic Data of Southern Iraq Using Normal Move Out-Frequency Wavenumber Technique
...Show More Authors

Multiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Feb 27 2023
Journal Name
Applied Sciences
Comparison of ML/DL Approaches for Detecting DDoS Attacks in SDN
...Show More Authors

Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an

... Show More
View Publication
Scopus (45)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Tue Jun 21 2022
Journal Name
Peerj Computer Science
Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref