Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str
... Show MoreColumns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and deformations, caused by spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co
Background: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left u
... Show MoreBackground: One of the major problems in endodontics is micro-leakage of root canal fillings which might contribute to the failure of endodontic treatment. To avoid this problem, a variety of sealers have been tested. The objective of this, in vitro, study was to evaluate the shear bond strength of four resin based sealers (AH plus, silver free AH26, RealSeal SE and Perma Evolution permanent root canal filling material) to dentin. Materials and Methods: Forty non-carious extracted lower premolars were used. The 2mm of the occlusal surfaces of teeth were sectioned, to expose the dentin surface. The exposed dentin surfaces of teeth were washed with 5ml of 2.5% NaOCl solution followed by 5ml of 17 % EDTA then rinsed by deionized water to remov
... Show MoreIn this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in
In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in
The design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r
... Show MoreThis study deals with the serviceability of reinforced concrete solid and perforated rafters with openings of different shapes and sizes based on an experimental study that includes 12 post-fire non-prismatic reinforced concrete beams (solid and perforated). Three groups were formed based on heating temperature (room temperature, 400 °C, and 700 °C), each group consisting of four rafters (solid, rafters with 6 and 8 trapezoidal openings, and rafter with eight circular openings) under static loading. A developed unified calculation technique for deflection and crack widths under static loading at the service stage has been provided, which comprises non-prismatic beams with or without opening exposed to flexure concentra
... Show MoreThis study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.
... Show More