Preferred Language
Articles
/
KhZ2b4cBVTCNdQwCLkpS
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Annals Of Parasitology
Serum levels of C-reactive protein and ferritin in COVID-19 patients infected with Toxoplasma gondii
...Show More Authors

During infection, T. gondii disseminates by the circulatory system and establishes chronic infection in several organs. Almost third of humans, immunosuppressed individuals such as HIV/AIDS patients, cancer patients, and organ transplant recipients are exposed to toxoplasmosis. Therefore, the study aimed to investigate the possibility that Toxoplasma infection could be a risk factor for COVID-19 patients and its possible correlation with C-reactive protein and ferritin. Overall 220 patients referred to the Al Furat General Hospital, Baghdad, Iraq were enrolled from 2020–2021. All serum samples were tested for T. gondii immunoglobulins (IgG and IgM) antibodies, C-reactive protein and ferritin levels. In patients with COVID-19, the results

... Show More
Scopus (3)
Scopus
Publication Date
Tue Mar 01 2022
Journal Name
Process Safety And Environmental Protection
Safety and health management response to COVID-19 in the construction industry: A perspective of fieldworkers
...Show More Authors

View Publication
Scopus (53)
Crossref (50)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jul 30 2021
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm
...Show More Authors

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (55)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Al-kindy College Medical Journal
Assessment of the Awareness of COVID-19 among the Students Enrolled in Different Medical Universities of Pakistan: A Cross Sectional Survey
...Show More Authors

Background: The study was designed for the assessment of the knowledge of medical students regarding pandemics. In the current designed study, the level of awareness was checked and the majority of students were found aware of SARS-CoV and SARS-Cov2 (Covid-19).

Objective: To assess the awareness of SARS-CoV and SARS-Cov2 (Covid-19) among medical students of Pakistan.

Subjects and Methods: A cross-sectional survey was carried out in different universities of Pakistan from May to August 2020. A self-constructed questionnaire by Pursuing the clinical and community administration of COVID-19 given by the National Health Commission of the People's Republic of China was used am

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 29 2018
Journal Name
International Journal Of Women's Health And Reproduction Sciences
Prediction of Placenta Accreta Using Hyperglycosylated Human Chorionic Gonadotropin
...Show More Authors

Objectives: Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG. In addition, it has a different oligosaccharide structure compared to the regular hCG and promotes the invasion and differentiation of peripheral cytotrophoblast. This study aimed to measure hyperglycosylated hCG as a predictor in the diagnosis of placenta accreta. Materials and Methods: In general, 90 pregnant women were involved in this case-control study among which, 30 ladies (control group) were pregnant within the gestational age of ≥36 weeks with at least one previous caesarean section and a normal sited placenta in transabdominal ultrasound (TAU). The other 60 pregnant women (case

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
5th Iet International Conference On Renewable Power Generation (rpg), 2016, London, Uk
Electrical Machine Design for use in an External Combustion Free Piston Engine
...Show More Authors

Scopus (4)
Crossref (8)
Scopus Crossref
Publication Date
Sat Mar 08 2025
Journal Name
European Journal Of Agricultural And Rural Education
THE ROLE OF BACTERIA IN REDUCING THE IMPACT OF ENVIRONMENTAL POLLUTION: BETWEEN RISKS AND BENEFITS / A REVIEW ARTICLE
...Show More Authors

The objective of this article is to study the impact of environmental pollution on air, water, and soil quality with a focus on the role of environmental bacteria in bioremediation of pollutants. The research also addresses the ability of some strains of bacteria to remove heavy metals and petroleum hydrocarbons and degrade toxic substances, resulting in improved environmental quality. Outcomes: Empirical studies reveal that environmental pollution leads to significant health and environmental problems, such as a rise in respiratory disease as a result of air pollution, water pollution that affects aquatic life, and soil pollution that decreases crop output. Other bacterial strains such as Pseudomonas, Bacillus, and Streptomyces have also b

... Show More
View Publication Preview PDF