The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.
Background: COVID-19 is an ongoing disease that caused, and still causes, many challenges for humanity. In fact, COVID-19 death cases reached more than 4.5 million by the end of August 2021, although an improvement in the medical treatments and pharmaceutical protocols was obtained, and many vaccines were released. Objective: To, statistically, analyze the data of COVID-19 patients at Alshifaa Healthcare Center (Baghdad, Iraq). Methods: In this work, a statistical analysis was conducted on data included the total number, positive cases, and negative cases of people tested for COVID-19 at the Alshifaa Healthcare Center/Baghdad for the period 1 September – 31 December 2020. The number of people who got the test was 1080, where 424 w
... Show MoreVaccine hesitancy poses a significant risk to global recovery from COVID-19. To date however, there is little research exploring the psychological factors associated with vaccine acceptability and hesitancy in Iraq.
To explore attitudes towards COVID-19 vaccination in Iraq. To establish the predictors of vaccine uptake and vaccine hesitancy in an Iraqi population.
Using a cross-sectional design, 7,778 participants completed an online questionnaire exploring their vaccination status, likelihood of infection, perc
The objective of this article is to study the impact of environmental pollution on air, water, and soil quality with a focus on the role of environmental bacteria in bioremediation of pollutants. The research also addresses the ability of some strains of bacteria to remove heavy metals and petroleum hydrocarbons and degrade toxic substances, resulting in improved environmental quality. Outcomes: Empirical studies reveal that environmental pollution leads to significant health and environmental problems, such as a rise in respiratory disease as a result of air pollution, water pollution that affects aquatic life, and soil pollution that decreases crop output. Other bacterial strains such as Pseudomonas, Bacillus, and Streptomyces have also b
... Show Morethis research aims at a number of objectives including Developing the tax examination process and raise its efficiency without relying on comprehensive examination method using some statistical methods in the tax examination and Discussing the most important concepts related to the statistical methods used in the tax examination and showing its importance and how they are applied. the research represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side Some statistical methods applied to the sample of the final accounts for the contracting company (limited) and the pharmaceutical industry (
... Show MoreGenome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show MoreThis study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreObjective: To measure the serum levels of Fetuin-A, ischemia-modified albumin (IMA), and ferritin in hospitalized patients with severe COVID-19in Baghdad, Iraq. Moreover, to determine these biomarkers' cut-off valuesthat differentiate between severely ill patients and control subjects. Methods: This case-control study was done from 15 September to the end of December 2021 and involved a review of the files and collectionof blood samples from patients (n=45, group1) hospitalized in COVID-19 treatment centersbecause of severe symptoms compared tohealthy subjects as controls (n=44, group2). Results: Fetuin-A serum levels were not statistically different between patients and controls. In contrast, IMA and ferritin levels were significan
... Show MoreIn recent years, there has been a rise in interest in the study of antibiotic occurrence in the aquatic environment due to the negative consequences of prolonged exposure and the potential for bacterial antibiotic resistance. Most antibiotic residues from treated wastewater end up in the aquatic environment as they are not eliminated in facilities that treat wastewater. Antibiotics must be identified in influent and effluent wastewater using reliable analytical techniques for several reasons. Firstly, monitoring antibiotic presence in aquatic environments. Secondly, assessing environmental risks, computing wastewater treatment plant removal efficiencies, and estimating antibiotic consumption. Therefore, this work aims to provide an overview
... Show MoreThe advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show More