The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our systematic literature review demonstrates that ML-powered tools can alleviate the burden on healthcare systems. These tools can analyze significant amounts of medical data and potentially improve predictive and preventive healthcare.
Low back pain a major causes of morbidity throughout the world and it is a most debilitating condition ,and can lead to decreased physical function ,compromised quality of life, and psychological distress. Obesity is nowadays a pandemic condition. Obese subjects are commonly characterized by musculoskeletal disorders and particularly by non-specific LBP. However, the relationship between obesity and LBP remain to date unsupported by objective measurements of mechanical behavior of spine and it is morphology in obese subjects. Key words: obesity, low back pain,
Background: The transcriptional control of various cell types, especially in the development or functioning of immune system cells involved in either promoting or inhibiting the immune response against cancer, is significantly influenced by DNA or RNA methylation. Multifaceted interconnections exist between immunological or cancer cell populations in the tumor's microenvironment (TME). TME alters the fluctuating DNA (as well as RNA) methylation sequences in these immunological cells to change their development into pro- or anti-cancer cell categories (such as T cells, which are regulatory, for instance). Objective: This review highlights the impact of DNA and RNA methylation on myeloid and lymphoid cells, unraveling their intricate
... Show MoreAmygdalin (d-Mandelonitrile 6-O-β-d-glucosido-β-d-glucoside) and its semi synthetic product is Laetrile ( also called vitamin B17): a natural cyanogenic glycoside occurring in the seeds of some edible plants, such as bitter almonds and peaches. Early in the 19th century, Amygdalin was first isolated in 1830 by two French chemists, Robiquet and Boutron-Charlard, as active components in various fruit pits and raw nuts. However, the systematized study of vitamin B17 started when chemist Bohn (1802) discovered that a hydrocyanic acid is released during distillation of the water from bitter almonds. The various pharmacological effects of Laetrile include antiatherogenic, activity in renal fibrosis, pulmonary fibrosis, immune regulation, ant
... Show MoreLow back pain a major causes of morbidity throughout the world and it is a most debilitating condition ,and can lead to decreased physical function ,compromised quality of life, and psychological distress.
Obesity is nowadays a pandemic condition. Obese subjects are commonly characterized by musculoskeletal disorders and particularly by non-specific LBP. However, the relationship between obesity and LBP remain to date unsupported by objective measurements of mechanical behavior of spine and it is morphology in obese subjects. &nb
... Show MoreMany patients with advanced type 2 diabetes mellitus (T2DM) and all patients with T1DM require insulin to keep blood glucose levels in the target range. The most common route of insulin administration is subcutaneous insulin injections. There are many ways to deliver insulin subcutaneously, such as vials and syringes, insulin pens, and insulin pumps. Though subcutaneous insulin delivery is the standard route of insulin administration, it is associated with injection pain, needle phobia, lipodystrophy, noncompliance, and peripheral hyperinsulinemia. Therefore, the need exists to deliver insulin in a minimally invasive or noninvasive way and in the most physiological way. Inhaled insulin was the first approved noninvasive and alternative way
... Show MoreBackground:SARS-CoV-2 infection has caused a global pandemic that continues to negatively impact human health. A large group of microbial domains including bacteria co-evolved and interacted in complex molecular pathogenesis along with SARS-CoV-2. Evidence suggests that periodontal disease bacteria are involved in COVID-19, and are associated with chronic inflammatory systemic diseases. This study was performed to investigate the association between bacterial loads of Porphyromonas gingivalis and pathogenesis of SARS-CoV-2 infection. Fifty patients with confirmed COVID-19 by reverse transcriptase-polymerase chain reaction, their age ranges between 20-76 years, and 35 healthy volunteers (matched accordingly with age and sex to th
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More