Preferred Language
Articles
/
KRiNEpUBVTCNdQwCLSVc
Deep Bayesian for Opinion-target identification
...Show More Authors

The use of deep learning.

View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
A Review for Arabic Sentiment Analysis Using Deep Learning
...Show More Authors

     Sentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.

     In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Dec 30 2012
Journal Name
College Of Islamic Sciences
Interpretation of opinion At the rational school Descriptive study
...Show More Authors

Praise be to God, Lord of the worlds, and prayers and peace be upon our master Muhammad and his family and companions until the Day of Judgment.
      The words of God Almighty are for the sake of the greatest and greatest speech, and the scholars, may God have mercy on them, raced.
To dive into knowing the word of God and what he intended, so they wrote in it the literature and collected works in it, and explained it to those after them.
      And when the noble companions, were extremely eloquent and eloquent, because the Holy Qur’an was revealed in the language of the Quraysh, and all the Arabs knew their language, they understood the Holy Qur’an and applied it p

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Al–bahith Al–a'alami
SURVEYS MEASUREMENT OF PUBLIC OPINION BETWEEN THEORY AND PRACTICE
...Show More Authors

The majority of statisticians, if not most of them, are primarily concerned with the theoretical aspects of their field of work rather than their application to the practical aspects. Its importance as well as its direct impact on the development of various sciences. Although the theoretical aspect is the first and decisive basis in determining the degree of accuracy of any research work, we always emphasize the importance of the applied aspects that are clear to everyone, as well as its direct impact on the development of different sciences. The measurements of public opinion is one of the most important aspects of the application of statistics, which has taken today, a global resonance and has become a global language that everyone can

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage-Bayesian Estimator for the Scale Parameter of Exponential Distribution
...Show More Authors

  This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations.         In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for

... Show More
View Publication Preview PDF
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Non Bayesian estimation for survival and hazard function of weighted Rayleigh distribution (b)
...Show More Authors

In this paper, we proposed a new class of Weighted Rayleigh Distribution based on two parameters, one is scale parameter and the other is shape parameter which introduced in Rayleigh distribution. The main properties of this class are derived and investigated in . The moment method and maximum likelihood method are used to obtain estimators of parameters, survival function and hazard function. Real data sets are collected to investigate two methods which depend it in this study. A comparison was made between two methods of estimation.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Weibull Distribution under Generalized Weighted Loss Function
...Show More Authors

In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).

View Publication Preview PDF
Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref