In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error
... Show MoreSynthesis of new heterocyclic compounds containing four five-membered rings together was the main goal of this work. The new derivatives of [tetrakis (1,2,4-triazole /1,3,4-thiadiazole /1,3,4-oxadiazole][bis-(benzene-1,3,5-triyl)] dioxymethylene A7-A18 were synthesized by the reaction of [bis-(dimethyl 5-yl-isophthalate)] dioxymethylene compound A1 which was previously prepared from the reaction of 1,2-dibromomethan and dimethyl 5-hydroxyisophthalate, then treated with hydrazine hydrate to yield the corresponding acid hydrazide A2. In the next step, compound A2 was refluxed with 4-substituted isothiocyanate to give substituted thiosemicarbazides A3-A6. The treatment of the latter compounds in basic medium of 2M o
... Show MoreIn this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.
We study in this paper the composition operator that is induced by ?(z) = sz + t. We give a characterization of the adjoint of composiotion operators generated by self-maps of the unit ball of form ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C? and give some other partial results.
In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
In this research, the Boiti–Leon–Pempinelli (BLP) system was used to understand the physical meaning of exact and solitary traveling wave solutions. To establish modern exact results, considered. In addition, the results obtained were compared with those obtained by using other existing methods, such as the standard hyperbolic tanh function method, and the stability analysis for the results was discussed.
The synthesis and properties of two new series of compounds having 1,3-Oxazepineand 1,3-thiazole rings connected through azo linkage are reported. These compounds weresynthesized by the reaction of phthalic anhydride with Schiff bases. The molecular structuresof these compounds were verified by elemental analysis, FTIR and 1HNMR spectroscopy.The mesomorphic behaviors of these compounds were studied by optical polarizedmicroscopy (OPM) and differential scanning calorimetry (DSC). All compounds of the twoseries show liquid crystalline properties. The influence of the central oxazepine and thiazolerings and the terminal substituents on the type and temperature range of the mesomorphousproperties of these compounds has been elucidated
In this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth
... Show MoreIn this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.