In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreThis paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa
... Show MoreAbstract: The M(II) complexes [M2(phen)2(L)(H2O)2Cl2] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that a
... Show MoreSmall ring heterocycles containing nitrogen and sulfur have been under investigation for a long time because of their important medicinal properties. Among the wide range of heterocycles explored to develop pharmaceutically important molecules, thiadiazoles had played an important role in medicinal chemistry. A survey of literature had shown that compounds having thiadiazole nucleus possess a broad range of biological activities such as anti-inflammatory (1), antibacterial (2), and antifungal activities (3). Thiazine-4-one and their derivatives are import classes of compounds in organic and medicinal chemistry. The thiazine-4-one ring system is a core structure in various synthetic pharmaceutical agents, displaying a broad spectrum of biolo
... Show MoreAn approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
In this paper, some conditions to guarantee the existence of bounded solution to the second order multi delayed arguments differential equation are given. The Krasnoselskii theorem used to the Lebesgue’s dominated convergence and fixed point to obtain some new sufficient conditions for existence of solutions. Some important lemmas are established that are useful to prove the main results for oscillatory property. We also submitted some sufficient conditions to ensure the oscillation criteria of bounded solutions to the same equation.
ABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreA series of new Bis-1,4-Butane -1,3,4 – Oxadizole derivatives [III a-j] were synthesized from adipic acid dihydrazide and different aromatic acids in the presence of phosphours oxychloide. There compounds were characterized by their IR, microanalysis, and mass spectral data. In vitro antimicrobial were synthesized. In vitro antimicrobial activity of these compounds against (Gram negative) and (Gram positive) were reported, some of these compounds prepared derivatives exhibited antimicrobial activity