The performance and lifetime of the flexible asphalt pavement are mainly dependent on the interfacial bond strength between layer courses. To enhance the bond between layers, adhesive materials, such as tack coats, are used. The tack coat itself is a bituminous material, which is applied on an existing relatively non-absorbent surface to ensure a strong bond between the old and newly paved layer. The primary objective of this study was to evaluate the effects of various types of tack coat materials on interlayer bond strength and to determine the optimal application rate for each type. The tack coat types used in this paper were RC-70, RC-250, and CSS-1h. Both laboratory-prepared and field-constructed hot mix asphalt concrete pavements using the tack coats were tested for the binding strength between the layers. A direct shear test was used for the testing. The results obtained from the study showed that the optimum application rate for RC-70 was 0.1 L/m2, and for RC-250, it was 0.2 L/m2, while the optimum application rate for CSS-1h was 0.1 L/m2. From the field test, the optimum application rate of the RC-250 tack coat was 0.1 L/m2.
Ceramic to metal joining technique, which was used in this investigation includes the use of active filler alloy as a sandwich between the alumina and kovar alloy for brazing. High purity powdered metals of silver, copper, and additives of titanium were used to prepare the active filler alloy, through compacting the mixed powders and alloying in a furnace with argon atmosphere at the temperature of 800oC for 10 minutes. To use it as an active filler metal, it has been modified to a proper thickness. Two groups of alumina were prepared with different sintering temperatures (1450oC and 1650oC) and each group was tested under atmospheric pressure, vacuum furnace pressure of 2*10-4 torr and vacuum furnace pressure of 2*10-6 torr. All the pro
... Show MoreAging of asphalt pavements typically occurs through oxidation of the asphalt and evaporation of the lighter maltenes from the binder. The main objective of this study is to evaluate influence of aging on performance of asphalt paving materials.nAsphalt concrete mixtures, were prepared, and subjected to short term aging (STA) procedure which involved heating the loose mixtures in an oven for two aging period of (4 and 8) hours at a temperature of 135 o C. Then it was subject to Long term aging (LTA) procedure using (2 and 5) days aging periods at 85 o C for Marshall compacted specimens. The effect of aging periods on properties of asphalt concrete at optimum asphalt content such as Marshall Properties, indirect tensile strength at 25 o C,
... Show MoreRoller-Compacted Concrete (RCC) is a zero-slump concrete, with no forms, no reinforcing steel, no finishing and is wet enough to support compaction by vibratory rollers. Because the effectiveness of curing on properties and durability, the primary scope of this research is to study the effect of various curing methods (air curing, emulsified asphalt(flan coat) curing, 7 days water curing and permanent water curing) and different porcelanite (local material used as an Internal Curing agent) replacement percentages (volumetric replacement) of fine aggregate on some properties of RCC and to explore the possibility of introducing more practical RCC for road pavement with minimum requirement of curing. Cubes specimens were sawed from the slab
... Show MoreBackground: This study aimed to evaluate the effect of zirconia different surface treatments (primer, sandblast with 50μmAl2O3, Er,Cr:YSGG laser) on shear bond strength between zirconia surface and resin cement. Material and methods: Sixty presintered Y-TZP zirconia cylinder specimens (IPS e.max ZirCAD, Ivoclar vivadent) will be fabricated and sintered in high temperature furnace of (1500 C for 8 hours) according to manufacturer’s instructions to the selected size and shape of (5mm. in diameter and 6mm in height). All specimens were ground flat using 600.800.1000.1200, aluminum oxide abrasive paper to obtain a standardized surface roughness. Surface roughness values were then recorded in µm using surface roughness tester (profi
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreBackground: evaluate the effects of three different intracoronal bleaching agents on the shear bond strengths (SBS) and failure site of stainless steel and monocrystalline (sapphire) orthodontic brackets bonded to endodontically treated teeth using light cured orthodontic adhesive in vitro. Materials and methods: Eighty extracted sound human upper first premolars were selected, endondontically treated and randomly divided equally (according to the type of the brackets used) into two main groups (n = 40 per group). Each main group were subdivided (according to the bleaching agent used) into four subgroups 10 teeth each; as following : control (un bleached) group, hydrogen peroxide group (Hp) 35%, carbamide peroxide group (CP) 37% group and s
... Show MoreThe research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m3, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test
Background: Denture relining is the process of resurfacing of the tissue side of the ill fitting denture, the bond strength at the relining-denture base interface is most important for denture durability.The aim of present study was to evaluate the shear bond strength between the thermosens as relining material and different denture base materials that bonded by thermo fusing liquid. As this corrective procedureis the common chair side procedure in the dental clinic. Material and method: Sixty samples were prepared and divided into three main groups according to the type of denture base materials.Group (A) referred to the heat cure acrylic samples which consisted of 20 samples. Group (B) referred to the high impact acrylic samples which con
... Show MoreObjective. This study aimed to evaluate the orthodontic bond strength and enamel-preserving ability of a hydroxyapatite nanoparticles-containingself-etch system following exposure to various ageing methods. Materials and Methods. Hydroxyapatite nanoparticles (nHAp) were incorporated into an orthodontic self-etch primer (SEP, Transbond™ plus) in three different concentrations (5%, 7%, and 9% wt) and tested versus the plain SEP (control) for shear bond strength (SBS), adhesive remnant index (ARI) scores, and enamel damage in range-finding experiments using premolar teeth. The best-performing formulation was further exposed to the following four artificial ageing methods: initial debonding, 24 h water storage, one-month water stora
... Show MoreBackground: In dentistry, dentist takes the advantages of soft lining materials due to the viscoelastic properties. The major problem is the adhesion of the soft liner with the denture base material. Materials and Methods: Heat cured of high impact acrylic resin specimens prepared with dimensions 75x13x13mm for shear bond strength test, soft lining material (Refit and Mollosil) with a 3-mm thickness and used to join each two acrylic blocks. Also four specimens with the same previous dimensions utilized for chemical and physical surface analysis. The specimens grouped as control (without plasma) and experiment (with oxygen plasma) treated high impact acrylic specimens. Results: Plasma treatment increased the shear bond strength for both Refi
... Show More