Today, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculated with risk mortality at 5 and 10 years depending on the number of unknown factors. The new system presented in a graphical user interface to facilitate the friendliness at the user side.
The state, as one of the most important social institutions that works to provide services and security for individuals, needs security, and this security is achieved according to a specific hierarchy that starts from the security of the individual and the security of society to the security of the state, as the advanced state security is based on the basic pillars of solidarity and social peace This security consists of several levels (human, regional, social, economic, and cyber), unlike Arab criminal legislation, including Iraqi law, which is based on the concept of traditional state security, as it relies on the military side only in order to provide maximum criminal protection for the security of the political system The security of
... Show MoreIn this work, we present the notion of sp[γ,γ^(* ) ]-open set, sp[γ,γ^(* ) ]-closed, and sp[γ,γ^(* ) ]-closure such that several properties are obtained. By using this concept, we define a new type of spaces named sp[γ,γ^(* ) ]-compact space.
In this paper, we propose new types of non-convex functions called strongly --vex functions and semi strongly --vex functions. We study some properties of these proposed functions. As an application of these functions in optimization problems, we discuss some optimality properties of the generalized nonlinear optimization problem for which we use, as an objective function, strongly --vex function and semi strongly --vex function.
In this essay, we utilize m - space to specify mX-N-connected, mX-N-hyper connected and mX-N-locally connected spaces and some functions by exploiting the intelligible mX-N-open set. Some instances and outcomes have been granted to boost our tasks.
We introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.
In this article we derive two reliability mathematical expressions of two kinds of s-out of -k stress-strength model systems; and . Both stress and strength are assumed to have an Inverse Lomax distribution with unknown shape parameters and a common known scale parameter. The increase and decrease in the real values of the two reliabilities are studied according to the increase and decrease in the distribution parameters. Two estimation methods are used to estimate the distribution parameters and the reliabilities, which are Maximum Likelihood and Regression. A comparison is made between the estimators based on a simulation study by the mean squared error criteria, which revealed that the maximum likelihood estimator works the best.
In this paper we introduced many new concepts all of these concepts completely
depended on the concept of feebly open set. The main concepts which introduced in
this paper are minimal f-open and maximal f-open sets. Also new types of
topological spaces introduced which called Tf min and Tf max spaces. Besides,
we present a package of maps called: minimal f-continuous, maximal f-continuous,
f-irresolute minimal, f-irresolute maximal, minimal f-irresolute and maximal firresolute.
Additionally we investigated some fundamental properties of the concepts
which presented in this paper.
This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreIn this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919 for a previous study. The comparison between the numerical and numerical simulation res
... Show More