An experiment was carried out evaluate the performance of RAU combined equipment under three levels of practical speed, (V1) 4.06 km. h-1, (V2) 4.43 km. hr-1 and (V3) 5.76 km. hr-1, and three levels of depth with 10,20and 30 cm. It is denoted by D1, D2, D3 respectively. A split plot design was used within the RCBD design with three replications. The experiment results showed that the first practical speed 4.06 km.hr-1 achieved the lowest slippage percentage from 9.61%, lowest traction power 14.65hp, lowest soil penetration resistance to1.34 kg.cm-2, and the highest total operating costs (40803.4 ID.ha-1, while the third speed achieved the opposite results. The first treatment depth achieved the lowest results for slippage percentage 8.52%, traction power 15.34hp, soil penetration resistance 1.17 kg. cm-2, and total operating costs 37215.0ID. ha-1, while the third depth achieved the opposite results. Interaction between treatment depth and practical speed showed that the first treatment depth with the first practical speed has the lowest average of slippage percentage 7.63%, the lowest value of the traction power 13.77 hp, and the lowest average of soil resistance to penetration 1.03 kg.cm-2, while the first treatment depth and third practical speed has lowest average of the operating costs 34533.4 ID.ha-1.
Detecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was construct
... Show MoreAutorías: Nuha Mohsin Dhahi, Muhammad Hamza Shihab. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.
Economic analysis plays a pivotal role in managerial decision-making processes. This analysis is predicated on deeply understanding economic forces and market factors influencing corporate strategies and decisions. This paper delves into the role of economic data analysis in managing small and medium-sized enterprises (SMEs) to make strategic decisions and enhance performance. The study underscores the significance of this approach and its impact on corporate outcomes. The research analyzes annual reports from three companies: Al-Mahfaza for Mobile and Internet Financial Payment and Settlement Services Company Limited, Al-Arab for Electronic Payment Company, and Iraq Electronic Gateway for Financial Services Company. The paper concl
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreThe impact of management control systems (MCS) on organizations performance empirical research has been the subject of numerous studies during the past decade in developed and emerging economies. In the contemporary competitive, complex and changing global business environment, firms are being challenged to adopt business models that enable them to address the strategic uncertainties and risks they face in their business environments. The main issue of this study is that management accounting researchers argue that one of the ways firms can continually rejuvenate themselves to survive and succeed in these complex and uncertain environments is to understand the role of management control systems in Formulating a b
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreConcrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show MoreThe thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show More